Sterile Neutrinos

Joachim Kopp (CERN & JGU Mainz) MITP Summer School, Mainz | July 2024

 $\mathcal{L} \supset y \, \overline{L} \left(i \sigma^2 H^*
ight) N$

Solution the only renormalizable coupling of the SM to a singlet fermion (aka "sterile neutrino" or "heavy neutral lepton")

The Neutrino Portal

Solution the only renormalizable coupling of the SM to a singlet fermion (aka "sterile neutrino" or "heavy neutral lepton")

The Neutrino Portal

Solution the only renormalizable coupling of the SM to a singlet fermion (aka "sterile neutrino" or "heavy neutral lepton")

The Neutrino Portal

The only renormalizable coupling of the SM to a singlet fermion (aka "sterile neutrino" or "heavy neutral lepton")

Definition: sterile neutrino = SM singlet fermion

Very generic extension of SM

O can be leftover of extended gauge multiplet

Useful phenomenological tool

- **O** can explain v masses (seesaw mechanism, m ~ TeV...MPI)
- can explain cosmic baryon asymmetry (thermal leptogenesis at m>100 GeV, ARS leptogenesis at m<100 GeV)
- **O** can explain dark matter (m ~ keV)
- O can act a mediator to a dark sector (any mass)
- **O** can explain oscillation anomalies (m ~ eV)
 - Georgia Karagiorgi's talk

Neutrino Portal Phenomenology

 $\mathcal{L} \supset y \, \overline{L} \left(i \sigma^2 H^*
ight) N$

new contribution to the v mass matrix
 leads to mass mixing between v and N
 active-sterile neutrino oscillations
 N production in neutrino interactions

Neutrino Oscillations

Initial state

$$|\nu_{\alpha}\rangle = \sum_{j} U_{\alpha j}^{*} |\nu_{j}\rangle$$

Transition probability

$$P_{\alpha \to \beta} = \left| \langle \nu_{\beta} | e^{-i\hat{H}T} | \nu_{\alpha} \rangle \right|^{2}$$
$$= \sum_{j,k} U_{\alpha j}^{*} U_{\beta j} U_{\alpha k} U_{\beta k}^{*} \exp\left[-i\left(E_{j} - E_{k}\right)T\right]$$

IGU

M Two flavor approximation

$$U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

erc

Neutrino PLATFORM

$$P_{\alpha \to \beta} \simeq \sin^2 2\theta \sin^2 \frac{\Delta m^2 T}{4E}$$

Neutrino Oscillations

Oscillation Example: v_µ Disappearance

 \mathbf{V} Use intense flux of \mathbf{v}_{μ} from pion decay in accelerator experiment or in the upper atmosphere

Oscillation Example: v_µ Disappearance

\mathbf{M} Use intense flux of \mathbf{v}_{μ} from pion decay in accelerator experiment or in the upper atmosphere

 \mathbf{M} Use intense flux of v_{μ} from pion decay in accelerator experiment or in the upper atmosphere

 \mathbf{M} Look for "missing" \mathbf{v}_{μ} at distances too short to be compatible with standard oscillations

- \mathbf{M} Use intense flux of v_{μ} from pion decay in accelerator experiment or in the upper atmosphere
- \mathbf{M} Look for "missing" v_{μ} at distances too short to be compatible with standard oscillations

Veutrino PLATFORM

erc

- \mathbf{M} Use intense flux of v_{μ} from pion decay in accelerator experiment or in the upper atmosphere
- \mathbf{M} Look for "missing" v_{μ} at distances too short to be compatible with standard oscillations

erc

- \fbox Use intense flux of v_{μ} from pion decay in accelerator experiment or in the upper atmosphere
- \fbox Look for "missing" v_{μ} at distances too short to be compatible with standard oscillations

Interestingly, some experiments have presented results consistent with oscillations involving sterile neutrinos

 $^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$

 $\mathbf{M} \sim 3\sigma$ deficit

V_e disappearance into sterile state?

Giunti Laveder 1006.3244

would require very large mixing (conflict with reactor observations)

The Gallium Anomaly

- two independent target volumes (hoping to see oscillation pattern)
- radiochemistry similar to other gallium experiments (correlated systematics?)
- but: past experiments cross-calibrated with solar neutrinos

BEST <u>arXiv:2109.11482</u> Barinov Gorbunov <u>arXiv:2109.14654</u>

MiniBooNE

MiniBooNE

MiniBooNE Collaboration arXiv:2006.16883

$\Delta \rightarrow \gamma N$

Other

Dirt Δ→ Νγ

 π^0 misic

ν_e from μ^{+/}

Best-fit

Data

 \mathbf{v}_{e} from K⁰ \mathbf{v}_{e} from K^{+/}

> 1200 E_v^{QE} [MeV]

$\Delta \rightarrow \gamma N$

Other

Dirt Δ→ Νγ

 π^0 misic

 ν_e from $\mu^{+/}$

Best-fit

Data

 \mathbf{v}_{e} from K⁰ \mathbf{v}_{e} from K^{+/}

> 1200 E_v^{QE} [MeV]

$\Delta \rightarrow \gamma N$

- $\overrightarrow{\Omega} \Delta$ production rate can be estimated from $\Delta \rightarrow \pi N$
- Pions may be absorbed on their way out of the nucleus
 - may excite another Δ resonance $\Delta \rightarrow \gamma N$ enhanced by ~factor 2
 - **O** or may be absorbed
 - control region suppressed by ~factor 2

Ioannisian <u>1909.08571</u> Giunti Ioannisian Ranucci <u>1912.01524</u>

This factor 2 has been taken into account by MiniBooNE

private communication from Bill Louis

Cross Section Uncertainties

Large systematic uncertainties in
 Composition of neutrino beam
 Neutrino interaction cross sections

Image Credit: Callum Wilkinson

Joachim Kopp — Oscillation Anomalies

Image Credit: Callum Wilkinson

Joachim Kopp — Oscillation Anomalies

Neutrino PLATFORM

CERN

erc IGU Joachim Kopp – C

multi-nucleon effects are crucial