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I. Abstract
• Brito and Denicol [Phys. Rev. D 102 (2020) 116009]: Linear stability
of Israel-Stewart theory with net-charge diffusion for massless, classi-
cal gas of noninteracting particles.

• Goal of this work: Extend theory to nonvanishing background charge.
•Main Results:
–Change of charge-diffusion coefficient: becomes at most four times
its value for zero background charge.

– Systematic study to identify parameter regions where solutions re-
main stable and causal.

II. Second-order dissipative fluid dynamics

• Fluid dynamics: conservation of charge and energy-momentum:
∂µN

µ = 0 , (1)
∂µT

µν = 0 . (2)
• In Landau frame, fluid four-velocity uµ follows flow of energy, such
that tensor decomposition of charge current and energy-momentum
tensor reads

Nµ = nuµ + nµ , (3)
T µν = εuµuν − (P + Π)∆µν + πµν . (4)

Here, n and ε are charge density and energy density in fluid rest frame,
P is pressure,Π is bulk viscous pressure, nµ is charge-diffusion current,
and πµν is shear-stress tensor. Furthermore, ∆µν ≡ gµν − uµuν is
projector onto three-space orthogonal to uµ.

• Eqs. (1)–(2) are 5 eqs. for 14 unknowns, need to provide 9 additional
eqs. to close the system of eqs. of motion.
In second-order dissipative fluid dynamics, these are relaxation-type
equations for the dissipative currents Π, nµ, and πµν, which can be
derived from underlying microscopic theory, e.g., Boltzmann equation

τΠDΠ + Π = −ζθ − ℓΠn∇µn
µ − τΠnn

µ∇µP

− δΠΠΠθ − λΠnn
µ∇µα + λΠππ

µνσµν , (5)
τnDn⟨µ⟩ + nµ = κ∇µα− τnnνω

νµ

− δnnn
µθ − ℓnΠ∇µΠ + ℓnπ∆

µν∇απ
α
ν

+ τnΠΠ∇µP − τnππ
µν∇νP − λnnnνσ

µν

+ λnΠΠ∇µα− λnππ
µν∇να , (6)

τπDπ⟨µν⟩ + πµν = 2ησµν + 2τππ
⟨µ
λ ων⟩λ − δπππ

µνθ

−τπππ
λ⟨µσ

ν⟩
λ + λπΠΠσ

µν − τπnn
⟨µ∇ν⟩P

+ℓπn∇⟨µnν⟩ + λπnn
⟨µ∇ν⟩α , (7)

with α ≡ βµ, β = 1/T , and ωµν ≡ (∇µuν −∇νuµ)/2 being the fluid
vorticity.

III. Linear stability analysis

• Eqs. (3)–(7) are linearized, Fourier-transformed, made dimensionless,
and their modes are analyzed for causality and stabilty.

• Explicit calculation: We consider ideal gas of classical, massless parti-
cles, i.e., velocity of sound (squared) c2s = 1/3 and bulk viscous pres-
sure vanishes. Furthermore, w0 = 4P0, n̄0 = P0β0.

• In this case our system reduces to:
Ω̂ −3n0

n̄0
Ω̂ −n0

n̄0
κ̂ −κ̂ 0

3n0

4n̄0
Ω̂ −3Ω̂ −κ̂ 0 0

− n0

4n̄0
κ̂ κ̂ Ω̂ 0 −κ̂

−iτ̂κκ̂ 0 0 1 + iτ̂nΩ̂ iL̂nπκ̂

0 0 −4
3iκ̂ −2

3iL̂πnκ̂ 1 + iτ̂πΩ̂




δα̃

δβ̃/β0
δũ∥
δξ̃∥
δχ̃∥

 =


0

0

0

0

0

 .

(8)
• Determinant yields a polynomial of fifth order, we obtain five different
modes.

IV. Results: Analysis of modes
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• Increasing τ̃κ leads to earlier propagation of the shear and charge-diffusion modes.
• Product L̂nπL̂πn is responsible for attraction of shear and charge-diffusion modes.
• Summary: Non-zero coupling L̂nπL̂πn leads to two critical wave numbers. At first critical wave number: shear
mode and one charge mode start to propagate while the other charge mode remains non-propagating. At second
critical wave number: shear mode becomes non-propagating mode, while the two charge modes propagate.

• These plots represent just one example of the white, blue, and green regions in the causality-stability plot below.
Analyzing modes for every pair of parameter values determines causality and stability regions.

IV. Results: Causality and stabilty regions

• For very large negative values of L̂nπL̂πn, system becomes acausal, which implies instability (red area).
• Increasing L̂nπL̂πn, we find a stable and causal region, which is further subdivided in three parts.
•We also investigated the region of positive values for L̂nπL̂πn, where system remains causal, but exhibits unstable
modes. This region can again be subdivided into five parts characterized by qualitatively different behavior of
the various dispersion relations. We have studied these analytically in our Paper [2].
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