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I. Abstract IV. Results: Analysis of modes

* Brito and Denicol [Phys. Rev. D 102 (2020) 116009]: Linear stability
of Israel-Stewart theory with net-charge diffusion for massless, classi-
cal gas of noninteracting particles.
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e Goal of this work: Extend theory to nonvanishing background charge.

e Main Results:

— Change of charge-diffusion coefficient: becomes at most four times
its value for zero background charge.

— Systematic study to identify parameter regions where solutions re- 0 0.5
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I1. Second-order dissipative fluid dynamics

e Fluid dynamics: conservation of charge and energy-momentum:

A,N" =0, (1)
9,T" =0 . (2)

« In Landau frame, fluid four-velocity " follows flow of energy, such e Increasing T/ﬁJA leads to earlier propagation of the shear and charge-diffusion modes.

N

tensor reads e Summary: Non-zero couplin f,mﬁm leads to two critical wave numbers. At first critical wave number: shear
y ping
NE = nut + n# (3) mode and one charge mode start to propagate while the other charge mode remains non-propagating. At second
’ . .
TH = eyt — (P + DA™ 4 (4) critical wave number: shear mode becomes non-propagating mode, while the two charge modes propagate.

* These plots represent just one example of the white, blue, and green regions in the causality-stability plot below.

Here, n and € are charge density and energy density in fluid rest frame, . ) ) , - .
Analyzing modes for every pair of parameter values determines causality and stability regions.

P 1s pressure, 11 1s bulk viscous pressure, n' 1s charge-diffusion current,
and 7" 1s shear-stress tensor. Furthermore, A" = ¢ — v u” 1s
projector onto three-space orthogonal to u'.

* Egs. (1)—(2) are 5 eqs. for 14 unknowns, need to provide 9 additional IV. Results: Causality and stabilty regions
egs. to close the system of egs. of motion.

In second-order dissipative fluid dynamics, these are relaxation-type
equations for the dissipative currents 1I, n”, and 7#”, which can be 30
derived from underlying microscopic theory, e.g., Boltzmann equation

DI+ 11 = -0 — (n, V0" — 10’V , P
— onmll0 — A"V o + Aoy, (5)
7. Dn' 4+ nt = V' — 7m0
— OO — L, VI + £, APV (78
+ 7, IVFP — 7, 7", P — \,,,n, 0"
AV = AV (6) stable and causal:
T DT 4 = oo 4 o7 N — e | Q),,, €, propagate
—T7T7T7T)\<MO'K> + Adlo™ — 7Y P
R AAVAL ISP WA vt (7)

with o = B, 8 =1/T, and w,, = (V,u, — V,u,)/2 being the fluid stable and causal:
vorticity (., Q0 propagate

stable and causal:
o, €2, (), propagate

I11. Linear stability analysis

* Egs. (3)—(7) are linearized, Fourier-transtformed, made dimensionless,
and their modes are analyzed for causality and stabilty.

e Explicit calculation: We consider 1deal gas of classical, massless parti- o
cles, i.e., velocity of sound (squared) ¢ = 1/3 and bulk viscous pres-  For very large negative values of L,,.L,, system becomes acausal, which implies instability (red area).
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sure vanishes. Furthermore, wy = 4%, ng = £ f5p. e Increasing £,,.L..,, we find a stable and causal region, which is further subdivided in three parts.

N

* In this case our system reduces to: * We also investigated the region of positive values for [Zmﬁm, where system remains causal, but exhibits unstable

qm() i 4 / 56 \ modes. This region can again be subdivided 1nto five parts characterized by qualitatively different behavior of
1

_nlo% 0 53/8, the various dispersion relations. We have studied these analytically in our Paper [2].

Q) 0 —k Qo
0O 1+ Z'7A'n§2 Z',CAWTI% 5§||
—3ik —2iLank 1 +i5,Q |\ 0X) References
(8)
e Determinant yields a polynomial of fifth order, we obtain five different e [1] C. Brito, G. Denicol [Phys. Rev. D 102 (2020) 116009]
modes. e [2]J.S., M. Mayer, D.H. Rischke [Phys. Rev. D 107 (2023) 114028]
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