

60th International Winter Meeting on Nuclear Physics

> 22 - 26 January 2024 Bormio, Italy

Istituto Nazionale di Fisica Nucleare

High power lasers for basic science and applications: the perspectives of the I-LUCE Italian facility

Pablo Cirrone - INFN Bormio (I), January 22-26, 2024

Outline

2

High power lasers and particle acceleration

I will better **focus on proton** beams

The upcoming INFN I-LUCE **high-power laser facility** with some example of future perspectives

Istituto Nazionale di Fisica Nucleare

lasers and particle acceleration?

4

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target:

.

. . .

Thin/thick solid/liquid/gassous

Other useful things

High contrast laser High quality target fabrication High quality wave front-end

4

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target:

.

Thin/thick solid/liquid/gassous

Other useful things High contrast laser

High quality target fabrication High quality wave front-end

How Much Pressure Does a PW Laser Exert?

1 PW/1µm spot size corresponds to 10²³ w/cm²

That is the equivalent of the pressure of 10 million Eiffel Towers on the tip of your finger!!

Seriously extreme!

Curtesy of Gerard Morou Ecole Polytechnique (F)

5

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target: thin/thick solid/liquid/gassous ...

Other useful things High contrast laser High quality target fabrication High quality wave front-end [many other laser and target parameters]

Laser-solid target interaction for protons, ions acceleration

•Multi species production: g, e-, p, ions

- Emax ~ 10 TV/m
- •Short distance (~µm)

Proton characteristics

High energy: up to ~ 100 MeV Pulse duration \approx 10s fs - 100s ps ppb \approx 108-1011 Broad energy spectra (100%) Wide angular divergence (\approx 10°-20°)

5

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target: thin/thick solid/liquid/gassous ...

Other useful things High contrast laser High quality target fabrication High quality wave front-end [many other laser and target parameters]

Laser-solid target interaction for protons, ions acceleration

•Multi species production: g, e-, p, ions

- Emax ~ 10 TV/m
- •Short distance (~µm)

Proton characteristics

High energy: up to ~ 100 MeV Pulse duration \approx 10s fs - 100s ps ppb \approx 108-1011 Broad energy spectra (100%) Wide angular divergence (\approx 10°-20°)

5

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target: thin/thick solid/liquid/gassous ... Laser-solid target interaction for protons, ions acceleration

•Multi species production: g, e-, p, ions

- Emax ~ 10 TV/m
- •Short distance (~µm)

Proton characteristics

High energy: up to ~ 100 MeV Pulse duration \approx 10s fs - 100s ps ppb \approx 108-1011 Broad energy spectra (100%) Wide angular divergence (\approx 10°-20°)

Other useful things High contrast laser High quality target fabrication High quality wave front-end [many other laser and target parameters]

Laser Wake Field Acceleration (LWFA) for electrons

7.8 GeV have been reached at the BELLA (Berkeley Lab) in 2019 using two lasers

Laser plasma ion-acceleration current facilities

Laser plasma ion-acceleration current facilities

VULCAN, RAL (UK) Phelix, GSI (De) Texas PW (US)

E_{max}~ 100 MeV

ATON-L4 (ELI Beamlines) 10 PW (1.5kJ/150fs)

I_{max}~ 10²¹ W/cm²

GEMINI, RAL (UK) Draco, HZDR (De) Pulser I, APRI (Kr) J-Karen, JAEA (J)

HAPLS-L3, (ELI Beamlines) 1 PW (30J/30fs/10Hz)

The basic ingredients: an high-power, short-pulse laser

GAP Cirrone, PhD - pablo.cirrone@Infn.it

GAP Cirrone, PhD - pablo.cirrone@Infn.it

2020 world lasers facilities will be the server of the ser

From ICUIL (International Committee on Ultra-High Intensity Lasers) https://www.icuil.org/

Istituto Nazionale di Fisica Nucleare

Let's concentrate on ion acceleration

Laser plasma ion-acceleration principal motivation

E_{max} ~ 50 MV/m L_{acc} ~ 1-10 m

11

Target Normal Sheath Acceleration

REVIEW PAPERS:

- Macchi, Borghesi, Passoni, Rev. Mod. Phys. 85 (2013) 751
- Borghesi et al, Springer Proc. Phys. 231 (2019) 143

Laser-driven ion acceleration				
from plastic target				
- 0				
2D particle-in-cell simulation of the interaction of high-intensity laser relevant to L3 laser and thus ELMAAk beamline) with a micrometer-th Acceleration of both protons (pink color) and cathon ions (green colors) MeVinnucleon and 40 MeVinucleon, respectively, can be clearly disting high-innergy protons and ions have a great importance for various for Biology, Medicine, Chemistry, Materials Science, Engineering, and Acc	pulse (parameters are (ck flat plastic target: 1, to maximum energy 150 uished in the visualization as well seen applications in Physics, nacology.			
Time: 2 fs				
carbon energy [MeV/nucleon]	proton energy [MeV/nucleon]			ay []
0.01 0.1 1 10	0.1 1 10 100	0.5 1 2 5	-100	0 100

Role of the ponderomotive force on electrons energy gain

In an oscillating, quasi-monochromatic electromagnetic field described by a vector potential $\mathbf{a}(\mathbf{r},t)$, the relativistic ponderomotive force is given by:

$$f_p = - m_e c^2 \nabla \sqrt{(1 + \langle a \rangle^2)}$$

$$f_p = \frac{dp^s}{dt} = -mc^2 \nabla \gamma$$

Energy Gain: 100 MeV/um (in a plasma medium)!!!

Pablo Cirrone, PhD - pablo.cirrone@Ins.infn.it

11

Target Normal Sheath Acceleration

REVIEW PAPERS:

- Macchi, Borghesi, Passoni, Rev. Mod. Phys. 85 (2013) 751
- Borghesi et al, Springer Proc. Phys. 231 (2019) 143

Laser-driven ion acceleration				
from plastic target				
- 0				
2D particle-in-cell simulation of the interaction of high-intensity laser relevant to L3 laser and thus ELMAAk beamline) with a micrometer-th Acceleration of both protons (pink color) and cathon ions (green colors) MeVinnucleon and 40 MeVinucleon, respectively, can be clearly disting high-innergy protons and ions have a great importance for various for Biology, Medicine, Chemistry, Materials Science, Engineering, and Acc	pulse (parameters are (ck flat plastic target: 1, to maximum energy 150 uished in the visualization as well seen applications in Physics, nacology.			
Time: 2 fs				
carbon energy [MeV/nucleon]	proton energy [MeV/nucleon]			ay []
0.01 0.1 1 10	0.1 1 10 100	0.5 1 2 5	-100	0 100

Role of the ponderomotive force on electrons energy gain

In an oscillating, quasi-monochromatic electromagnetic field described by a vector potential $\mathbf{a}(\mathbf{r},t)$, the relativistic ponderomotive force is given by:

$$f_p = - m_e c^2 \nabla \sqrt{(1 + \langle a \rangle^2)}$$

$$f_p = \frac{dp^s}{dt} = -mc^2 \nabla \gamma$$

Energy Gain: 100 MeV/um (in a plasma medium)!!!

Pablo Cirrone, PhD - pablo.cirrone@Ins.infn.it

12

Target Normal Sheath Acceleration 0.1-10 µm long

REVIEW PAPERS:

- Macchi, Borghesi, Passoni, Rev. Mod. Phys. 85 (2013) 751
- Borghesi et al, Springer Proc. Phys. 231 (2019) 143

Laser-driven ion acceleration from plastic target				
2D particle-in-cell simulation of the interaction of high-intensity laser relevant to 13 laser and thus EUMA4A beamlined with a micrometer the Account of the second second production of the second	oulse (parameters are ick flat plastic target:), to main an event plastic starget and the second star inform its reversion as well and from its reversion, so the second applications in Physics, hadrology.			
Time: 2 [fs]				
carbon energy [McV/nucleon] 0.01 0.1 1 10	proton energy [MeV/nucleon] 0.1 1 10 100	ax [] 0.5 1 2 5	ay [] -100 0	

 I_L (laser intensity) = E/ τ /S = 10²¹ W/cm²

Direct Laser interaction:

- E ~ $I_L^{1/2}\lambda = 10^{14}$ V/m
- B = E/c = $3x10^5$ T
- •P_{rad} = I_L/c = 3x10¹⁰ J/cm³ = 300 Gbar

Laser-Plasma interaction:

Debye Length

$$\lambda_D = 2.4 \,\mu m \cdot \sqrt{\frac{T_{hot}}{1 MeV}} \cdot \sqrt{\frac{10^{19} \, cm^{-3}}{N_{hot}}} \implies ~ \mathbf{\mu m!}$$

Acceleration time

$$\tau = \sqrt{\frac{\lambda_D^2 m_{ion}}{T_{hot}}} = 0.24 \, ps \sqrt{\frac{\lambda_D^2 n_{hot}}{10^{19}}} \qquad \Longrightarrow \qquad \mathbf{\sim ps}$$

Electric Field

 $\mathsf{E} = \frac{T_{hot}}{e\lambda_D} \approx \frac{MV}{\mu m} \qquad \longrightarrow \qquad \mathbf{TV/m!}$

Energy Gain: 100 MeV/um (in a plasma medium)!!!

12

Target Normal Sheath Acceleration 0.1-10 µm long

REVIEW PAPERS:

- Macchi, Borghesi, Passoni, Rev. Mod. Phys. 85 (2013) 751
- Borghesi et al, Springer Proc. Phys. 231 (2019) 143

Laser-driven ion acceleration from plastic target				
2D particle-in-cell simulation of the interaction of high-intensity laser relevant to 13 laser and thus EUMA4A beamlined with a micrometer the Account of the second second production of the second	oulse (parameters are ick flat plastic target:), to main an event plastic starget and the second star inform its reversion as well and from its reversion, so the second applications in Physics, hadrology.			
Time: 2 [fs]				
carbon energy [McV/nucleon] 0.01 0.1 1 10	proton energy [MeV/nucleon] 0.1 1 10 100	ax [] 0.5 1 2 5	ay [] -100 0	

 I_L (laser intensity) = E/ τ /S = 10²¹ W/cm²

Direct Laser interaction:

- E ~ $I_L^{1/2}\lambda = 10^{14}$ V/m
- B = E/c = $3x10^5$ T
- •P_{rad} = I_L/c = 3x10¹⁰ J/cm³ = 300 Gbar

Laser-Plasma interaction:

Debye Length

$$\lambda_D = 2.4 \,\mu m \cdot \sqrt{\frac{T_{hot}}{1 MeV}} \cdot \sqrt{\frac{10^{19} \, cm^{-3}}{N_{hot}}} \implies ~ \mathbf{\mu m!}$$

Acceleration time

$$\tau = \sqrt{\frac{\lambda_D^2 m_{ion}}{T_{hot}}} = 0.24 \, ps \sqrt{\frac{\lambda_D^2 n_{hot}}{10^{19}}} \qquad \Longrightarrow \qquad \mathbf{\sim ps}$$

Electric Field

 $\mathsf{E} = \frac{T_{hot}}{e\lambda_D} \approx \frac{MV}{\mu m} \qquad \longrightarrow \qquad \mathbf{TV/m!}$

Energy Gain: 100 MeV/um (in a plasma medium)!!!

Maximum proton energy experimental scaling laws (TNSA)

€ 12<u>⊗</u>

 τ_1 [fs]

650

300

65

45

30

1000

plasma acceleration

K Zeil et al 2010 New J. Phys. 12 045015

 ∞

0 8 140

E, [J]

3

100

120

⊕¹³

13

ARTICLE

DOI: 10.1038/s41467-018-03063-9

63-9 OPEN

Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme

A. Higginson¹, R.J. Gray¹, M. King¹, R.J. Dance¹, S.D.R. Williamson¹, N.M.H. Butler¹, R. Wilson¹, R. Capdessus¹, C. Armstrong^{1,2}, J.S. Green², S.J. Hawkes^{1,2}, P. Martin³, W.Q. Wei⁴, S.R. Mirfayzi¹, X.H. Yuan⁴, S. Kar^{2,3}, M. Borghesi³, R.J. Clarke², D. Neely^{1,2} & P. McKenna¹
 2018

Vulcan laser at the Rutherford Appleton Laboratory (UK)

Intensity = $\sim 10^{20}$ Wcm⁻²

Pulses of p-polarised, 1.053 µm-wavelength

Pulse duration $\tau = (0.9 \pm 0.1)$ ps (FWHM) **Energy** after the plasma mirror: (210 ± 40) J

Target: thin planar plastic foil with thickness in the range 10 nm-1.5 um

Laser-driven ion acceleration mechanisms: laser intensity vs target density

Curtesy of S Bulanov

Istituto Nazionale di Fisica Nucleare

I-LUCE at INFN-LNS

INFN Laser indUCEd radiation production

Goal: realisation of a new European laser facility for new beams, new physics and new Users

7.9 M€ WP3 High-Power lasers

Infrastructure

Laser system and interaction cham EuPRAXIA

Electrons and ion acceleration

LUC

Advanced technologies for Human Centred Medicine

Anthem

23 Istituti; Spoke 4: Caserta, Pavia, INFN

1.3 M€

Electron acceleration for conventional and ultra high dose rate beams nell'accelerazione di elettroni e UHDR

THALES

N

10

LR

In-air irradiation

station

MAGNEX

Punto Mis

Conventional lons:

from TANDEM and

Cyclotron

Pablo Cirrone, PhD - pablo.cirrone@Ins.infn.it

production

PE/

RE

I-LUCE first phase

21

Two interaction chambers

1) Interaction Chamber n.1: Radiation production (protons/ions, electrons, neutrons, gamma, etc.)

• One in-air irradiation station for multidisciplinary studies

2) Interaction Chamber n.2: Warm Dense Matter studies (WDM)

- Nuclear physics in plasma
- Interaction of conventional ion beams with laser-generated plasma
- Nuclear physics fusion studies in plasma
- •

Two working modalities

Low power: 50 TW/23fs/10Hz
 High power: 350 TW/23fs/1Hz

Upgrade from 350 TW to 500 TW (0.5 M€)

Low power modality: 50 TW (LUCE (INFN)

22

Laser Power		≥ 50 TW	
Energy per pulse		≥1J	
Pulse duration		≤ 23 fs	
Focusing surface		36 μm²	
Max power density (at the target) 1×1^2		1.21 · 10 ²⁰ 7.72 · 10 ¹⁹	
Contrast ratio @100 ps (ASE) Repetition rate		> 10 ¹⁰ ≥ 10 Hz	
	Max energy	4 MeV	
Protons lons	Particle per pulse (at 2 MeV)	10 ¹¹ MeV ⁻¹ Sr ⁻¹	
	Energy spread	100%	
	Beam divergency (max)	±20°	
	Max energy	0.1 GeV	
Eletrons	Particles per pulse	10 ⁹	
	Beam divergency (max)	± 20 mad	
Neutrons	Max energy Particles per pulse Energy spread Beam divergency	TBD	
Gamma X-beams	Synchrotron radiation of the electrons inside the plasma or breemsstrahlung		
	Energy	up to 20 MeV	
	Beam divergency	Directionality in the beam propabgation direction	

Fusion studies, nuclear studies, radioisotopes production,

Acting on the compression procedure, the pulse duration can be increased up to 1/10 ps: ==> $2.78 \cdot 10^{18}$ W/cm² $2.78 \cdot 10^{17}$ W/cm² ==> $i\lambda^2 = 1.77 \cdot 10^{18}$ $i\lambda^2 = 1.77 \cdot 10^{17}$

Longer plasma expansion times:

- Decay studies
- Stopping powers studies
- WDM characterisation

Power densities can be improved reducing the focusing spot: — shorter focusing parabola — but issues related to the: target degree, back reflection, ...

High-power modality: 350 TW (ILUCE (INFN)

23

Laser Power		350 TW	
Energy per pulse		>7 J	
Pulse duration		≤ 25 fs	
Focusing surfa	се	36 μ m ² or better	
Max power de	nsity (at the target)	8.82·10 ²⁰	
Ι*λ ²		5.64 · 10 ²⁰	
Contrast ratio	@100 ps (ASE)	> 10 ¹⁰	
Repetition rate	2	1 Hz	
	Max energy	50 MeV	
Protons	Particle per pulse (at 30 MeV)	10 ¹¹ MeV ⁻¹ Sr ⁻¹	
Ions	Energy spread	100%	
	Beam divergency (max)	±20°	
	Max energy	3 GeV	
Eletrons	Particles per pulse	10 ⁹	
	Beam divergency (max)	± 20 mad	
	Max energy	20 MeV	
Neutrons	Particles per pulse	10 ¹⁰	
Neutrons	Energy spread	100	
	Beam divergency	Isotropic	
Gamma X-	Synchrotron radiation of the electrons inside the plasma or		
beams	Energy	up to 80 MeV	
	Beam divergency	Directionality in the beam	

Protons spectra from A. Higginson et al. "Near-100 MeV protons via a laserdriven transparency-enhanced hybrid acceleration scheme", NATURE COMMUNICATIONS | (2018) 9:724

Neutrons spectra from A.Yogo et al. "Single shot radiography by a bright source of laser-driven thermal neutrons and x-rays", Applied Physics Express 14, 106001 (2021)

Electrons spectra from X. Wang et al. "Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV", NATURE COMMUNICATIONS, 4:1988 2018 DOI: 10.1038/ncomms2988

Istituto Nazionale di Fisica Nucleare

Physics cases at I-LUCE

Pablo Cirrone, PhD - pablo.cirrone@lns.infn.it

What we will have at disposal? Istituto Nazionale di Fisica 26 An high power laser: 8J/23fs/1Hz A plasma generated by the laser: Temperature: 2 eV - 200 eV

 $n pprox rac{I}{e^2 T}$

 $npprox rac{arepsilon_0 m_e \omega_p^2}{c^2}$

Density: 10²⁵ m⁻³

up to 70 AMeV

Ion beams in a wide Z range and energy

Medical and interdisciplinary applications

27

Use of ions/electrons beams for radiobiology studies

-for radioisotope production
- ... for hydrogen production
-for cultural heritage applications
- ... for inertial confinement studies

ELIMED/LIMAIA beamline th ELI-Beamlies facility (CZ)

ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

Daniele Margarone ^{1,*}, G. A. Pablo Cirrone ^{1,2}, Giacomo Cuttone ², Antonio Amico ², Lucio Andò ², Marco Borghesi ³, Stepan S. Bulanov ⁴, Sergei V. Bulanov ¹, Denis Chatain ⁵, Antonín Fajstavr ¹, Lorenzo Giuffrida ¹, Filip Grepl ¹, Satyabrata Kar ³, Josef Krasa ¹, Daniel Kramer ¹, Giuseppina Larosa ², Renata Leanza ², Tadzio Levato ¹, Mario Maggiore ⁶, Lorenzo Manti ⁷, Guliana Milluzzo ^{2,3}, Boris Odlozilik ¹, Veronika Olsovcova ¹, Jean-Paul Perin ⁵, Jan Pipek ², Jan Psikal ¹, Giada Petringa ², Jan Ridky ¹, Francesco Romano ^{2,8}, Bedřich Rus ¹, Antonio Russo ², Francesco Schillaci ^{1,2}, Valentina Scuderi ^{1,2}, Andriy Velyhan ¹, Roberto Versaci ¹, Tuomas Wiste ¹, Martina Zakova ¹ and Georg Korn ¹

MDPI

Nuclear astrophysics

28

THE COULOMB EXPLOSION PARADIGMA

The interaction of ultra-short laser pulses with an expanding gas mixture at controlled temperature and pressure inside a vacuum chamber causes the formation of **plasmas with multi-keV temperature**. These energies overlap with the typical temperatures of stellar environments **where thermonuclear reactions occur**, thus making this paradigm a <u>perfect scenario for</u> <u>nuclear astrophysics research</u>.

The AsFiN laser collaboration: A.Bonasera, G.L. Guardo, M. La Cognata, L. Lamia, D. Lattuada, A.A. Oliva, R.G. Pizzone, G.G. Rapisarda, S. Romano, D. Santonocito, A. Tumino

Example: deuterium-deuterium fusion

 $d+d \rightarrow {}^3\mathrm{He}(0.82 MeV) + n(2.45 MeV)$

 $d+d \rightarrow p(3.02 MeV) + t(1.01 MeV)$

$d+{}^3\mathrm{He} \rightarrow p(14.7 MeV) + {}^4\mathrm{He}(3.6 MeV)$

Nuclear fusion from laser-cluster interaction

Nuclear astrophysics: dd fusion

D. Lattuada, M. Barbarino, A. Bonasera, W. Bang, H. J. Quevedo, M. Warren, F. Consoli, R. De Angelis, P. Andreoli, S. Kimura, G. Dyer, A. C. Bernstein, K. Hagel, M. Barbui, K. Schmidt, E. Gaul, M. E. Donovan, J. B. Natowitz, and T. Ditmire Phys. Rev. C **93**, 045808 – Published 19 April 2016

As Fi N

This method will open the way for a new approach to study nuclear astrophysics reactions such as:

- -deuterium- deuterium
- -deuterium-³He
- -proton-lithium
- -proton-boron
- -12C-12C
- _16O_16O

-and much more....

Stopping powers in plasma (ILUCE LIVE Stopping Powers (ILUCE LIVE Stopping Power

30

Stopping power of ions in plasma is a process of fundamental importance in many applications:

- Inertial Confinement Fusion
- Astrophysics and Nuclear Astrophysics
- High-energy Density Physics
- Plasma strippers
- Solid State Physics

Characterization of ions stopping power in plasma at I-LUCE facility

Collaboration: C. Altana, G. Castro, S. Cavallaro, C. Ciampi, G.A.P. Cirrone, R. De Angelis, S. De Luca, G. Lanzalone, L. Malferrari, F. Odorici, L. Palladino, G. Pasquali, A. Russo, A. Trifirò and S. Tudisco

Partecipating INFN sections: Catania, LNS, LNGS, Bologna, Firenze

LNS has the only possibility, together with GSI, to deliver a beam with low energy by Tandem accelerator that cross a plasma plume generated under vacuum by a laser beam interacting with a solid target.

Nuclear physics mid-term plan

Stopping power in plasma

Radioisotopes

Hydrogen generation

 Drive laser
 Gas jet

 F/20 OAP
 F5-15 OAP

Fig. 48 Setup for the high-brilliance γ production via inverse Compton-scattering (from Sarri et al. [371])

Positrons generation

Nuclear reaction schemes

Protons and electrons generation

Chapter 6.2 Laser applications

Take-to-home message

- New radiation beams, complementary to the existing ones
- New basic physics and multidisciplinary studies (also complementary to other apparata in realisation, i.e PANDORA)
- A new European facility with unique features

Thanks to everyone

