

Recent highlights of the BESIII experiment

60th International Winter Meeting of Nuclear Physics, Bormio, Italy, January 22-26, 2024

Prof. Dr. Karin Schönning, Uppsala University

Outline

- BESIII at BEPC-II
- Recent highlights:
 - Hadron structure
 - Hadron spectroscopy
 - Hadron interactions
 - Precision and rare processes

How does the strong interaction form visible matter form the fundamental quarks and gluons?

BESIII at BEPC-II

The Beijing Electron-Positron Collider (BEPC-II)

UPPSALA UNIVERSITET

RF. SR RF

- CMS energies within 2.0 4.95 GeV.
- Optimised in the τ-charm region
- Luminosity ~ 10^{33} cm⁻²s⁻¹

The Beijing Spectrometer (BESIII)

- Near 4π coverage
- Tracking, PID, Calorimetry

HADRON STRUCTURE WITH BESIII

Electromagnetic Form Factors (EMFFs)

Charm Λ_c^+ baryons

BESIII energy scans from 2018* and 2023**

- Sharp rise in cross section near threshold
- Disagreement with Belle data*** near 4.6 GeV
- No discernible *G*_{eff} oscillations
- Energy dependence of $R = |G_E/G_M|^*$: \rightarrow Damped oscillations with frequency ~3.5 times larger than for the proton

BESIII: *Phys. Rev. Lett. 120, 132001 (2018) **Phys. Rev. Lett. 131, 191901 Belle: ***Phys. Rev. Lett. 101, 172001 (2008)

Complete decomposition of EMFFs

Production parameters of spin ¹/₂ baryons:

- Angular distribution parameter $\eta = \frac{\tau - R^2}{\tau + R^2}$ where $\tau = q^2/4M_B^2$

- Phase $\Delta \Phi$

Decay parameters for 2-body decays: α_1 and α_2 . If CP symmetry, $\alpha_1 = -\alpha_2 = \alpha$

Unpolarized part Polarized part Spin correlated part

$$W(\xi) = \frac{F_0(\xi) + \eta F_5(\xi)}{+ \alpha^2 (F_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) F_2(\xi) + \eta F_6(\xi))} + \alpha \sqrt{1 - \eta^2} \sin(\Delta \Phi) (F_3(\xi) + F_4(\xi))$$

 $\mathscr{T}_0(\xi) = 1$

 $\mathscr{T}_{1}(\xi) = \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} + \cos^{2}\theta \cos\theta_{1} \cos\theta_{2}$

 $\mathscr{T}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$

 $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$

 $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$

 $\mathscr{T}_5(\xi) = \cos^2 \theta$

 $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$

**BESIII: Phys. Rev. Lett. 123, 122003 (2019)

Complete decomposition of EMFFs

- First conclusive measurement of $\Delta \Phi$ in 2019^{*}.
- Dispersive calculations by Mangoni, Pacetti and Tommasi-Gustafsson**
 - Calculation of Λ charge radius
 - $\Delta \Phi$ only at one energy \rightarrow many solutions possible

New: Complete hyperon EMFFs

- Utilizes scan data collected in 2015.
- Combines **double-tag** and **single-tag** data.

New: Complete Σ^+ EMFFs

- Energy dependence of R and $\Delta \Phi$ in 3 points*
 - Double-tag $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^- \rightarrow p \pi^0 \overline{p} \pi^0$ at 2.64 GeV and 2.9 GeV
 - Single-tag $e^+e^- \rightarrow \Sigma^+\overline{\Sigma}^- \rightarrow p\pi^0 X + c.c.$ at 2.396 GeV
 - $\rightarrow \Delta \Phi$ / 180° $\Delta \Phi$ ambiguity
- Disagreement with $Y\overline{Y}$ potential model **.

Brand new: Complete Λ EMFFs

Spin analyses performed in the **continuum**^{*} ** and at J/ Ψ ^{***}, Ψ (3686)**** and Ψ (3773)*****

HADRON SPECTROSCOPY WITH BESIII

Hadron Spectroscopy

Unravelling the complexity of matter formed by the strong interaction...

Meson spectroscopy at BESIII

Multiple ways to produce conventional and exotic mesons:

- Direct production of vector states
- Charmonium decays
- Two-photon scattering

World-record samples of vector charmonia

R

• Energy scan in the continuum

Meson spectroscopy at **BESIII**

Charmonium spectroscopy

XYZ states do not fit into the naive quark model \rightarrow searchground for exotica!

- X: neutral non-vector states
- Y: neutral vector states
- Z: charged, manifestly multiquark states

Picture cred: R. Mitchell and M. Kuessner

New: Observation of a resonance at 4.7 GeV/c²

- Charmonium-like vector state
- Seen in $e^+e^- \rightarrow K^+K^-J/\Psi^*$
- $M = 4708^{+17}_{-15} \pm 21 \text{ MeV/c}^2$
- $\Gamma = 126^{+27}_{-23} \pm 30 \text{ MeV/c}^2$
- Significance > 5σ

 e^+

Vector charmonium-like Y states in PDG 2022

[MeV] ψ (4040), ψ (4160), ψ (4415) 200 ABLIKIM 08D (BESII) R AAIJ 13BC (LHCb) $B \rightarrow K\mu\mu$ ψ(4230) Width 180 ABLIKIM 21AJ (BESIII) ππψ(2S) ABLIKIM 20AG (BESIII) µ+µ ABLIKIM 20N (BESIII) π⁰π⁰J/ψ 160 ABLIKIM 200 (BESIII) $\eta J/\psi$ 6 ABLIKIM 19AI (BESIII) ωχ_ 140 ABLIKIM 19R (BESIII) πDD* 7 ABLIKIM 19V (BESIII) yX(3872) Δ ABLIKIM 17B (BESIII) ππJ/ψ 120 ABLIKIM 17G (BESIII) ππh_c ψ(4360) 5 ABLIKIM 21AJ (BESIII) ππψ (2S) 100 ABLIKIM 21AK (BESIII) γχ_... ABLIKIM 20O (BESIII) ηJ/ψ 80 ABLIKIM 17B (BESIII) ππJ/ψ ABLIKIM 17G (BESIII) ππh_c WANG 15A (BELLE) ππψ (2S) 2 60 3 LEES 14F (BABAR) ππψ (2S) ψ(4660) ABLIKIM 21AJ (BESIII) ππψ(2S) 40 JIA 20 (BELLE) D_D*s2 JIA 19A (BELLE) D_D. 20 WANG 15A (BELLE) ππψ (2S) LEES 14F (BABAR) ππψ (2S) PAKHLOVA 08B (BELLE) A.A. 3700 3800 4100 4200 4300 3900 4000 4400 4500 4600 4700

BESI

Picture credit: R. Mitchell & M. Kuessner

Mass [MeV/c²]

New: Precise line-shape measurement of $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$

- Line-shapes provide important information on the nature of charmonium-like states
 → Many charmonium-like resonances coincide with thresholds of DD, D*D* etc.
- BW fits yield masses at 4187 MeV/c^2 and 4414.6 MeV/c^2 (qd) First observation of 10^{3} $\Psi(4415) \to D_{s}^{*+}D_{s}^{*-}$ $5^{e^+e^- \rightarrow L}_{dressed}$ A third BW necessary to 10^{2} describe structure at 4.79 GeV*. |BW_| BW itted line $|\mathbf{BW}|^2$ --- PHSP 10 4.3 4.5 4.6 4.7 4.8 4.4 4.9 E_{CM} (GeV) 25 *Phys. Rev. Lett. 131, 151903 (2023)

New: Observation of resonance near $p\overline{\Lambda}$ threshold

So-called X(2085) seen in $e^+e^- \rightarrow p\overline{\Lambda}K^- + c.c.^*$

- $M = 2086^{+4}_{-2} \pm 9 \text{ MeV/c}^2$
- $\Gamma = 56^{+3}_{-3} \pm 25 \text{ MeV/c}^2$
- Favours $J^P = 1^+$
- Cannot be attributed to any known kaon.
- Not predicted by potential models.

*Phys. Rev. Lett. 131, 151901 (2023)

HADRON INTERACTIONS

Hyperon-nucleon (YN) interaction

Why?

- Crucial component to predict properties of hypernuclei.
- Needed to understand the *hyperon puzzle* of neutron stars.

How?

- Hyperon femtoscopy
- Hypernuclear studies
- Secondary YN interactions

Hyperon-nucleon (YN) interaction

Why?

- Crucial component to predict properties of hypernuclei.
- Needed to understand the *hyperon puzzle* of neutron stars.

How?

- Hyperon femtoscopy
- Hypernuclear studies

```
 Secondary YN interactions
```

BESI

 $-e^+e^- \rightarrow J/\Psi \rightarrow Y\overline{Y}$ \overline{Y} : Tag in detector *Y*: Scatters in beam pipe 29

New: First study of $\Xi^0 n \to \Xi^- p$ in an e^+e^- experiment

*Phys. Rev. Lett. 130, 251902(2023) **Phys. Lett. B 633, p 214-218 (2006)

- Primary reaction $e^+e^- \rightarrow J/\Psi \rightarrow \Xi^0 \overline{\Xi}^0$
- Secondary Ξ^0 beam with $p_{\Xi} = 0.818 \text{ GeV/c}$
- Interaction mainly with 9Be in beam pipe
- 20 events observed
- $\sigma(\Xi^0 + {}^9Be \to \Xi^- + {}^8Be + p) = 22.1 \pm 5.3 \pm 4.5 \text{ mb}$
- Assuming 3 effective reaction neutrons**: $\sigma(\Xi^0 n \to \Xi^- p) = 7.4 \pm 1.8 \pm 1.5 \text{ mb}$

HADRONIC EFFECTS IN PRECISION AND RARE PROCESSES

Precision tests of the Standard Model

- SM predicts very small violations of charge conjugation and parity (CP) symmetry.
- Sizeable CP violations prerequisite for *Baryogenesis* ← Sakharov criterion.
- Spin-carrying hyperons precision probe of CP symmetry.

CP tests with BESIII

- **Polarised** and **entangled** hyperon-antihyperon pairs enable CP tests in hyperon decays
- Sequentially decaying multi-strange and charm hyperons enable
 - Production- and decay parameters
- A combination of the two approaches enables separation of strong and weak decay phases
 → More sensitive CP tests!

New: CP tests in decays into neutrons

- Polarised and entangled $\Sigma^+\overline{\Sigma}^-$ pairs J/Ψ decays*
- Select events where $\Sigma^+ \to n\pi^+$, $\overline{\Sigma}^- \to \overline{p}\pi^0$ or c.c.
- First CP precision test of any hyperon decaying into a neutron.

•
$$A_{CP} = \frac{\alpha_+ + \overline{\alpha}_-}{\alpha_+ + \overline{\alpha}_-} = 0.080 \pm 0.052 \pm 0.028$$

*Phys. Rev. Lett. 131, 191802 (2023)

CP tests, world data

BESIII:

Nature Phys. **15**, p 631-634 (2019) Phys. Rev. Lett. 125, 052004 (2020) Nature 606, 64-69 (2022) Phys. Rev. Lett. 129, 131801 (2022) Phys. Rev. D 108, L031106 (2023)

Belle:

Sci. Bull. 68, 583-592 (2023)

HyperCP:

Phys. Rev. Lett. 93, 262001, 2004.

New: Search for baryon number violating $\Lambda\overline{\Lambda}$ oscillations

- Baryon number violation (BNV) another Sakharov criterion for *Baryogenesis*.
- Protons insanely stable against BNV, what about neutral hyperons?
- BESIII looking for "wrong sign" events, $\Lambda \rightarrow p\pi^-$ in $J/\Psi \rightarrow pK^-\overline{\Lambda}$.

•
$$\frac{BR(J/\Psi \to pK^-\Lambda + c.c.)}{BR(J/\Psi \to pK^-\overline{\Lambda} + c.c.)} < 4.4 \cdot 10^{-6} (90\% \text{ CL})$$

\$\to \text{ oscillation parameter } \delta m_{\Lambda \overline{\Lambda}} < 3.8 \cdot 10^{-18}\$

*Phys. Rev. Lett. 131, 121801 (2023)

UPPSALA

UNIVERSITET

Summary

- BESIII i a multi-purpose experiment that covers the main four areas of hadron physics:
 - Hadron structure
 - Hadron spectroscopy
 - Hadron interactions
 - Precision and rare processes

The highlights presented here is a selection of last year's accomplishment – not exhaustive!

- Upgraded accelerator open new possibilities
- BESIII > 500 published papers
 - 98 in Physics Review Letters
 - 2 Nature Physics
 - 1 Nature

Thanks for your attention!

STINT The Swedish Foundation for International Cooperation in Research and Higher Education

Backup

BESIII:

- $G_{osc}(p)^*$ and $G_{osc}(n)^*$, ** : same frequency, different phase: $\Delta D = D_p - D_n = 125^\circ \pm 12^\circ$
- First separation of G_E and G_M

SND: Smaller frequency for neutron oscillations***.

BESIII proton EMFFs:

Phys. Rev. D 91, 112004 (2015) Phys. Rev. D 99, 092002 (2019) Phys. Rev. Lett. 124, 042001 (2020) Phys. Lett. B 817, 136328 (2021) **BESIII neutron EMFFs:** BESIII, Nature Phys. 17, p 1200–1204 (2021) BESIII, Phys. Rev. Lett. 130, 151905 (2023) **SND:** Eur. Phys. J. C (2022) 82: 761

Time-like form factors

- Are complex:
 - $G_{E}(q^{2}) = |G_{E}(q^{2})| \cdot e^{i\Phi_{E}} , \quad G_{M}(q^{2}) = |G_{M}(q^{2})| \cdot e^{i\Phi_{M}}$
 - Ratio $R = \frac{|G_E(q^2)|}{|G_M(q^2)|}$ accessible from baryon scattering angle.
 - $\Delta Φ(q^2) = Φ_M(q^2) Φ_E(q^2) =$ phase between G_E and G_M → Polarizes final state!
- Related to space-like EMFFs via dispersion relations.
 - Nucleons: SL and TL accessible.
 - Hyperons: Only TL accessible, but also phase! $\Delta \Phi(q^2) \rightarrow o \leftrightarrow SL = TL$

Brand new: Decay asymmetry in $\Lambda_c^+ \rightarrow \Xi^0 K^+$

Phys. Rev. Lett. 132, 031801 (2024)