Fits of α_s using power corrections in the 3-jet region

Max Planck Institute for Physics & Technische Universität München

Based on Paolo Nason and GZ JHEP 06 (2023) 058

Giulia Zanderighi

Determination of α_s

precise measurements for observables sensitive to α_s

to be used to determine α_s :

- observable's sensitivity to α_s compared to experimental precision
- accuracy of the prediction (e.g. PDG imposes now at least NNLO accuracy)
- the size of non-perturbative effects
- the scale at which the measurement is performed

- Strong coupling: least well-known coupling. Its uncertainty affects precision measurements. Determined by comparing accurate theory predictions with
- Considerations that enter when determining whether an observable is suitable

PDG average

Procedure in the particle data group (PDG):

- decide which observables are included
- subdivide observables in categories
- provide an average for each category
- provide an average of all categories

 \Rightarrow the PDG average of α_s

$$\alpha_s(M_Z^2) = 0.1179 \pm 0.0009$$

Zooming-in on e+e- jet & shapes

"e+e-: jet & shapes":

longstanding discrepancy between α_s determinations based on nonperturbative corrections computed via Monte Carlos and those based on analytic approaches

ALEPH (j&s) OPAL (j&s) JADE (j&s) Dissertori (3j) JADE (3j) Verbytskyi (2j) Kardos (EEC) Abbate (T) Gehrmann (T) Hoang (C)

Definition of the observable

Thrust:

$$T = \max_{\vec{n}_T} \left(\frac{\sum_i |\vec{p_i} \cdot \vec{n}_T|}{\sum_i |\vec{p_i}|} \right) \qquad \tau = 1 - T,$$

$$\begin{split} & \underline{\text{C-parameter:}}\\ & \Theta^{\alpha\beta} = \frac{1}{\sum_{i} |p_{i}|} \sum_{i} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{|\vec{p}_{i}|}, \quad \alpha, \beta = 1, 2, 3\\ & C = 3 \cdot (\lambda_{1} \lambda_{2} + \lambda_{1} \lambda_{3} + \lambda_{2} \lambda_{3}) \end{split}$$

Durham y₃:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{E_{\text{vis}}^2}$$

Hemishere masses:

$$M_j^2 = rac{1}{E_{ ext{vis}}^2} \left(\sum_{p_i \in \mathcal{H}_j} p_i\right)^2, \quad j = 1, 2$$

 $M_{ ext{H}}^2 = \max\left(M_1^2, M_2^2
ight) \qquad M_{ ext{D}}^2 = |M_1^2 - M_2^2|$

Wide broadening:

$$B_j = \frac{\sum_{p_i \in H_j} |\vec{p_i} \times \vec{n_T}|}{2\sum_i |\vec{p_i}|}, \quad j = 1, 2$$

 $B_W = \max\left(B_1, B_2\right)$

Why event shapes?

- Perhaps the most basic class of final-state observables in QCD
- Event shapes provide a continue measure of deviation from Born-like 2-jet events

<u>2-jet event:</u> event-shape v << 1

<u>3-jet event:</u> event-shape v ~ 1

1. Linear sensitivity to α_s in the 3-jet region ••

Criteria

1.observable's sensitivity to α_s wrt experimental precision

2.accuracy of the prediction

3.the size of non-perturbative effects

4.the scale at which the measurement is performed

4. Measurements performed in a large range of energy scales, from about 35-206 GeV, most precise data at 91.2 GeV • •

ete jet & shapes

2. NNLO + NNLL (at least) perturbative accuracy through standard resummation techniques or SCET based

3. Relatively large, Λ/Q linear power corrections

1. Linear sensitivity to α_s in the 3-jet region ••

Criteria

1.observable's sensitivity to α_s wrt experimental precision

2.accuracy of the prediction

3.the scale at which the measurement is performed

4.the size of non-perturbative effects

3. Measurements performed in a large range of energy scales, from about 35-206 GeV, most precise data at 91.2 GeV • •

ete jet & shapes

2. NNLO + NNLL (at least) perturbative accuracy through standard resummation techniques or SCET based

4. Relatively large, Λ/Q linear power corrections

eter jet & shapes

Two approaches to non-perturbative corrections:

- with higher-order calculations
- analytic approaches

 - based predictions

 use Shower Monte Carlos hadronization models. Often criticised as this does not bear a clean relation to field-theoretical calculations, furthermore MCs are tuned using low-level perturbative (MC) calculations and used then

• dispersive-like approaches: based on the emission of a very-soft, nonperturbative gluon with an associated non-perturbative coupling α_0 Dokshitzer, Marchesini, Webber, Salam • factorisation based-approach to split perturbative and non-perturbative. Often used in combination with Soft-Collinear-Effective-Theroy (SCET) Collins, Soper, Korchemsky, Sterman; Abbate, Bauer, Hoang, Mateu, Schwartz, Stuart, Thaler...

eter jet & shapes

Two approaches to non-perturbative corrections:

 use Shower Monte Carlos hadronization models. Often criticised as this does not bear a clean relation to field-theoretical calculations, furthermore

the 3-jet region

Dokshitzer, Marchesini, Webber, Salam In the second Often used in combination with Soft-Collinear-Effective-Theroy (SCET) based predictions Collins, Soper, Korchemsky, Sterman; Abbate, Bauer, Hoang, Mateu, Schwartz, Stuart, Thaler...

Both analytic approaches calculate non-perturbative corrections in the 2-jet region and apply them also to

Non-perturbative corrections

C-parameter and thrust in the context of the renormalon framework

Ratio of full non-perturbative corrections to the 2-jet limit

- Recently, non-perturbative corrections to 3-jet region have been computed for
 - Caola et al. 2204.02247 (see also Luisoni, Monni, Salam 2012.00622; Caola et al. 2108.00622)

of α_s from C-parameter and thrust ...?

Are the newly computed corrections preferred by data ...?

Does the new calculation of the non-perturbative corrections lift the tension in the determination

Correction with respect to 2-jet limit

We found a way to compute these non-perturbative corrections numerically, in a rather observable-independent way.

Correction with respect to 2-jet limit

since there is an abrupt transition from the 2-jet to the 3-jet

For other observables, the two-jet limit is numerically very difficult to reach

Correction with respect 2-jet limit

We had to resort to quadruple precision to see the transition, for instance of the heavy-jet mass we obtain:

The 2-jet limit must be reached up to single-logs and constant terms, but these are, for some observables, numerically very important

Remarks

- there are clear indications that the 2-jet calculation is not a good approximation the in the 3-jet region, where α_s is fitted (at best it is wrong by a factor of order 1)
- for some observables there is a very abrupt transition from the 2-jet to the 3-jet region. This is an indication that sub-leading logarithms are numerically very important
- \Rightarrow We perform fits of α_s limiting ourselves to the three well-behaved observables C, 1-T and y₃ as measured by ALEPH at 91.2 GeV
 - ALEPH Eur. Phys. J. C 35 (2004) 457–486

Fit details

Fit is performed by minimising

$$\chi^{2} = \sum_{i,j} \left(\frac{1}{\sigma_{\exp}} \frac{d\sigma_{\exp}(v_{i})}{dv_{i}} - \frac{1}{\sigma_{\text{th}}} \frac{d\sigma_{\text{th}}(v_{i})}{dv_{i}} \right) V_{ij}^{-1} \left(\frac{1}{\sigma_{\exp}} \frac{d\sigma_{\exp}(v_{j})}{dv_{j}} - \frac{1}{\sigma_{\text{th}}} \frac{d\sigma_{\text{th}}(v_{j})}{dv_{j}} \right)$$
$$V_{ij} = \delta_{ij} \left(\frac{R_{i}^{2}}{R_{i}} + \frac{T_{i}^{2}}{I_{i}} \right) + (1 - \delta_{ij}) \frac{C_{ij}R_{i}R_{j}}{L_{ij}} + \frac{Cov_{ij}^{(\text{Sys})}}{I_{ij}}$$

$$\chi^{2} = \sum_{i,j} \left(\frac{1}{\sigma_{\exp}} \frac{d\sigma_{\exp}(v_{i})}{dv_{i}} - \frac{1}{\sigma_{th}} \frac{d\sigma_{th}(v_{i})}{dv_{i}} \right) V_{ij}^{-1} \left(\frac{1}{\sigma_{\exp}} \frac{d\sigma_{\exp}(v_{j})}{dv_{j}} - \frac{1}{\sigma_{th}} \frac{d\sigma_{th}(v_{j})}{dv_{j}} \right)$$

with
$$V_{ij} = \delta_{ij} \left(\frac{R_{i}^{2}}{R_{i}} + \frac{T_{i}^{2}}{I_{i}} \right) + (1 - \delta_{ij}) \frac{C_{ij}R_{i}R_{j}}{R_{i}R_{j}} + \frac{\operatorname{Cov}_{ij}^{(Sys)}}{I_{ij}}$$

statistical error $T_{\rm i} = \frac{\max(O(Q), O(Q))}{1 + 1}$ theory error

statistical correlation matrix

 $\operatorname{Cov}_{ii}^{(\mathrm{Sys})}$

 C_{ij}

covariance matrix of systematic errors

$$\mathbf{X} \quad C_{ij} = \frac{\frac{N_{ij}}{N} - \frac{N_i N_j}{N^2}}{\sqrt{\frac{N_i}{N} - \frac{N_i^2}{N^2}}\sqrt{\frac{N_j}{N} - \frac{N_j^2}{N^2}}}$$

Variation	$\alpha_s(M_Z)$	α_0	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
$D ext{-scheme}$	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

- We use NNLO predictions at scale $\mu_{\rm R} = Q/2$ and vary the scale up and down by a factor of two
 - Antenna-based calculation: A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, hep-ph/0505111
 - ColorFull Subtraction: Del Duca et al 1603.08927, 1606.03453

For the NNLO prediction we rely on the public code EERAD3

Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 0710.0346, 0711.4711, 0802.0813

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

Non-perturbative corrections can be included as

- a shift of the NNLO integrated distribution (scheme "a")
- a shift of the LO distribution only (scheme "b")
- ➡ a shift of the differential distribution (scheme "c")
- as in scheme "a" without any estimate of quadratic corrections included in other schemes (scheme "d") 20

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

Explicitly:

$$\Sigma^{(a)}(v) = \Sigma_{\text{NNLO}}(v - \delta v)$$
$$\Sigma^{(b)}(v) = \Sigma_B(v - \delta v) + \Sigma_{\text{NNLO}}(v) - \Sigma_B(v)$$
$$\Sigma^{(c)}(v) = \Sigma_{\text{NNLO}}(v) - \delta v \frac{d\Sigma_B(v)}{dv}$$

with

$$\delta(v) = \zeta(v)H_{\rm NP} + \left(\tilde{\zeta}(v) \times \frac{Q_0}{\lambda_0} - \zeta(v)\right) \times \frac{Q_0}{\lambda_0} \times H$$

Estimate of quadratic corrections

$$\Sigma^{(d)}(v) = \Sigma_{\text{NNLO}}(v - \delta v)$$
 with $\delta(v) = \zeta(v)H_{\text{NP}}$

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

Ambiguity in the event-shape definitions when applied to massive particles. Correct to different schemes using Monte Carlos:

- E-sheme (our default): make particle massless conserving the energies
- P-scheme: make particle massless conserving the three-momentum
- Decay-scheme: decay each massive particle isotropically in its CM frame into two massless particles
- Standard: do not correct

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
<i>P</i> -scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

NNLO deals with massless quarks. Use Monte Carlo to correct for massive charm and bottom MCada

$$v_i^{(\text{corr})} = v_i imes rac{v_i^{\text{MC},uas}}{v_i^{\text{MC},udscb}}$$

Variation	$lpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

As default Monte Carlo for the calculation of the migration matrix for the massschemes and heavy-to-light correction we used Pythia 8.

To assess the sensitivity to the Monte Carlo used we also use Herwig 6 and Herwig 7.

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

Default range fixed to the left of where resummation effects are important.

To assess sensitivity to range by varying the lower edge by a factor 2/3 and 3/2

observable	default	Fit ranges (2)	Fit ranges (
C	[0.25:0.6]	$[0.17{:}0.6]$	[0.375:0.6]
au	[0.1:0.3]	$[0.067{:}0.3]$	[0.15:0.3]
y_3	[0.05:0.3]	[0.033:0.3]	[0.075:0.3]

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

We implement correlations using a minimum overlap method

$$\operatorname{Cov}_{ij}^{(\mathrm{Sys})} = \delta_{ij}S_i^2 + (1 - \delta_{ij})\min(S_i^2, S_j^2)$$

To assess sensitivity to this, we also use replicas provided to us privately by Hasko Stenzel either around the default central value, or around the average of the replicas

$$\operatorname{Cov}_{ij}^{(\operatorname{Sys})} = \sum_{r} \left(v_i^{(r)} - \bar{v}_i \right) \left(v_j^{(r)} - \bar{v}_j \right) = N_r \left(\bar{v}_{ij} - \bar{v}_i \bar{v}_i \right)$$

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

Even in the 3-jet region y₃ is only additive if one assumes *no clustering* among the two soft partons from gluon splitting. We have computed the non-perturbative correction under this assumption.

To assess the error we also compute it under the assumption that they always cluster (corresponding to a massive gluon)

Variation	$\alpha_s(M_Z)$	$lpha_0$	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1174	0.64	6.8	0.15
Renormalization scale $Q/4$	0.1180	0.60	6.1	0.14
Renormalization scale Q	0.1182	0.68	7.9	0.18
NP scheme (B)	0.1186	0.79	6.4	0.15
NP scheme (C)	0.1194	0.84	4.7	0.11
NP scheme (D)	0.1184	0.66	5.2	0.12
P-scheme	0.1150	0.63	9.5	0.22
D-scheme	0.1188	0.79	5.1	0.12
no scheme	0.1168	0.58	8.1	0.18
No heavy to light correction	0.1176	0.68	6.2	0.14
Herwig6	0.1174	0.60	14.7	0.33
Herwig7	0.1174	0.60	10.9	0.25
Ranges (2)	0.1166	0.62	12.3	0.22
Ranges (3)	0.1178	0.69	2.4	0.07
Replica method (around average)	0.1180	0.62	5.8	0.13
Replica method (around default)	0.1180	0.62	5.8	0.13
y_3 clustered	0.1166	0.67	7.6	0.17
C	0.1252	0.47	0.9	0.06
au	0.1188	0.64	0.7	0.03
y_3	0.1196	1.90	0.02	0.002
C, au	0.1230	0.51	2.0	0.05

Fit result using 2-jet NP corrections

Variation	$\alpha_s(M_Z)$	α_0	χ^2	$\chi^2/N_{ m deg}$
Default setup	0.1128	0.56	ì6.1	0.37
Renormalization scale $Q/4$	0.1144	0.53	9.7	0.22
Renormalization scale Q	0.1132	0.56	18.9	0.43
NP scheme (B)	0.1124	0.64	26.5	0.60
NP scheme (C)	0.1128	0.74	17.0	0.39
NP scheme (D)	0.1128	0.56	16.1	0.37
<i>P</i> -scheme	0.1104	0.54	20.7	0.47
D-scheme	0.1120	0.66	16.4	0.37
no scheme	0.1130	0.51	15.2	0.35
No heavy to light correction	0.1126	0.58	16.1	0.37
Herwig6	0.1134	0.52	30.3	0.69
Herwig7	0.1132	0.52	21.6	0.49
Ranges (2)	0.1116	0.54	30.1	0.55
Ranges (3)	0.1130	0.60	9.3	0.29
Replica method (around average)	0.1144	0.54	12.9	0.29
Replica method (around default)	0.1144	0.54	12.9	0.29
y_3 clustered	0.1128	0.56	16.1	0.37
C	0.1236	0.44	0.8	0.05
au	0.1194	0.51	1.0	0.05
y_3	0.1152	—	1.7	0.22
C, au	0.1220	0.45	2.1	0.06

Theory prediction compared to data for observables entering the fits:

Quality of the fits

Description of other observables

Description of other observables not entering the fits:

Impact on PDG fit

PDG, Huston, Rabbertz, GZ

32

