COHERENT Elastic Neutrino-Nucleus Scattering Experiments

Kate Scholberg, Duke University

Bormio January 24, 2024

Neutrino interactions with Nuclei

Neutrino interactions with Nuclei

Neutrino interactions with Nuclei

Interactions with nuclei and electrons, minimally disruptive of the nucleus

Deep Inelastic Scattering

keV

GeV

Interactions with nucleons inside nuclei, often disruptive, hadroproduction

We are considering the low-energy regime and the gentlest interaction with nuclei

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For $QR \ll 1$, [total xscn] ~ A² * [single constituent xscn]

A: no. of constituents

(probability of kicking a nucleus with recoil energy T)

(probability of kicking a nucleus with recoil energy T)

 $\frac{d\sigma}{dT} \simeq \frac{\bigcap_{K=0}^{2} M}{2\pi} \frac{Q_{W}^{2}}{4} F^{2}(Q) \left(2 - \frac{MT}{E_{\nu}^{2}}\right)$

(probability of kicking a nucleus with recoil energy T)

(probability of kicking a nucleus with recoil energy T)

(probability of kicking a nucleus with recoil energy T)

(probability of kicking a nucleus with recoil energy T) E_v : neutrino energy T: nuclear recoil energy M: nuclear mass Q = √ (2 M T): momentum transfer

Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:

The only experimental signature:

tiny energy deposited by nuclear recoils in the target material

→ WIMP dark matter detectors developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils

CEvNS: what's it good for?

CEvNS as a **signal** for signatures of *new physics*

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics

CEvNS as a **signal** for *astrophysics*

CEvNS as a practical tool

(not a complete list!)

So

CEvNS: what's it good for?

CEvNS as a signal for signatures of *new physics*

CEvNS as a signal for understanding of "old" physics

CEvNS as a background for signatures of new physics

CEvNS as a **signal** for *astrophysics*

CEvNS as a **practical tool**

(not a 2 Many Things

complete list!)

So

The cross section is cleanly predicted in the Standard Model

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{\pi} F^2(Q) \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu}\right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]$$

E_v: neutrino energy
T: nuclear recoil energy
M: nuclear mass
Q = $\sqrt{(2 \text{ M T})}$: momentum transfer

F(Q): nuclear **form factor**, <~5% uncertainty on event rate

The CEvNS rate is a clean Standard Model prediction

A deviation from α N² prediction can be a signature of beyond-the-SM physics

Non-Standard Interactions of Neutrinos:

new interaction specific to v's

Non-Standard Interactions of Neutrinos:

new interaction specific to v's

Observe less or more CEvNS than expected? ...could be beyond-the-SM physics!

Other new physics results in a *distortion of the recoil spectrum* (Q dependence)

BSM Light Mediators

SM weak charge

Effective weak charge in presence of light vector mediator Z'

specific to neutrinos and guarks

e.g. arXiv:1708.04255

Neutrino (Anomalous) Magnetic Moment

e.g. arXiv:1505.03202, 1711.09773

energy

$$\left(\frac{d\sigma}{dT}\right)_m = \frac{\pi \alpha^2 \mu_\nu^2 Z^2}{m_e^2} \left(\frac{1 - T/E_\nu}{T} + \frac{T}{4E_\nu^2}\right) \quad \begin{array}{l} \text{Specific ~1/T upturn} \\ \text{at low recoil energy} \end{array}$$

Sterile Neutrino Oscillations

$$P_{\nu_{\alpha} \to \nu_{\alpha}}^{\rm SBL}(E_{\nu}) = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

"True" disappearance with baseline-dependent Q distortion

e.g. arXiv: 1511.02834, 1711.09773, 1901.08094

Neutrinos from nuclear reactors

- v_e -bar produced in fission reactions (one flavor)
- huge fluxes possible: ~2x10²⁰ s⁻¹ per GW
- several CEvNS searches past, current and future at reactors, but recoil energies<keV and backgrounds make this very challenging

Both cross-section and maximum recoil energy increase with neutrino energy:

coherence condition: $Q \lesssim rac{1}{R}$ (<~ 50 MeV for medium A)

Stopped-Pion (π**DAR)** Neutrinos

 ν_e

 $\mu^+ \rightarrow e^-$

3-body decay: range of energies between 0 and $m_{\mu}/2$ DELAYED (2.2 μ s)

Stopped-Pion Neutrino Sources Worldwide

Comparison of pion decay-at-rest v sources

Comparison of pion decay-at-rest v sources

Spallation Neutron Source

Oak Ridge National Laboratory, TN

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!

Time structure of the SNS source 60 Hz *pulsed* source

The SNS has large, extremely clean stopped-pion v flux

The COHERENT collaboration

http://sites.duke.edu/coherent

~100 members, 20 institutions 4 countries

The COHERENT Spirit (so far)

POORLY DRAWN LINES

Nuclear Target	Technology		Mass (kg)	Distance from source (m)	Recoil threshold (keVr)
Csl[Na]	Scintillating crystal	flash	14.6	19.3	5
Ge	HPGe PPC	zap	18	19.1	7.5
LAr	Single-phase	flash	24	27.5	20
Nal[TI]	Scintillating crystal	flash	185*/3338	25	13

Multiple detectors for N² dependence of the cross section

Expected recoil energy distribution

The CsI Detector in Shielding in Neutrino Alley at the SNS

A hand-held detector!

Almost wrapped up...

Layer	HDPE*	Low backg. lead	Lead	Muon veto	Water
Thickness	3"	2"	4"	2"	4"
Colour		///			

First light at the SNS (stopped-pion neutrinos) with 14.6-kg CsI[Na] detector

D. Akimov et al., *Science*, 2017 http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

Single-Phase Liquid Argon

- ~24 kg active mass
- 2 x Hamamatsu 5912-02-MOD 8" PMTs
 - 8" borosilicate glass window
 - 14 dynodes
 - QE: 18%@ 400 nm
- Wavelength shifter: TPB-coated Teflon walls and PMTs
- Cryomech cryocooler 90 Wt
 - PT90 single-state pulse-tube cold head

Detector from FNAL, previously built (Jonghee Yoo et al.) for CENNS@BNB (S. Brice, Phys.Rev. D89 (2014) no.7, 072004)

Likelihood fit in time, recoil energy, PSD parameter

Beam-unrelated-background-subtracted projections of 3D likelihood fit

- Bands are systematic errors
 from 1D excursions
- 2 independent analyses w/separate cuts, similar results (this is the "A" analysis)

Remaining CsI[Na] dataset, with >2 x statistics

- + improved detector response understanding
- + improved analysis

arXiv: 2110.07730

Flavored CEvNS cross sections

Separate electron and muon flavors by timing

And squeezing down the possibilities for new physics...

COHERENT Germanium Detectors

- 8 2.2-kg Ge PPC detectors from Mirion
- First deployment 2022
- Physics run 2023
- 110-150 eV FWHM pulser resolution/noise

First Ge Results (preprint very soon!)

Three down! But still more to go!

What's Next for COHERENT?

COHERENT future deployments

SNS power upgrade to 2 MW over next few years Second Target Station upgrade to 2.8 MW ~2030's

³/₄ bunches to FTS¹/₄ bunches to STS

Promising new space available for ~10-tonne scale detectors

Many exciting possibilities for v's + DM!

Future flavored CEvNS cross section measurements

Sensitive to ~few % SM differences in μ - and *e*-flavor cross sections, testing lepton universality of CEvNS (at tree level)

Stringent NSI parameters constraints, resolving oscillation ambiguities

Sterile neutrino sensitivity

$$1 - P(\nu_e \to \nu_s) = 1 - \sin^2 2\theta_{14} \cos^2 \theta_{24} \cos^2 \theta_{34} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$
$$1 - P(\nu_\mu \to \nu_s) = 1 - \cos^4 \theta_{14} \sin^2 2\theta_{24} \cos^2 \theta_{34} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

Cancel detector-related systematic uncertainties

w/ different baselines in one CEvNS detector seeing 2 sources Can also exploit flavor separation by timing Assume $L_{STS} = 20$ m and $L_{FTS} = 121$ m, 10-t argon CEvNS detector In 5 years, test ~entire parameter space allowed by LSND/MiniBooNE

Many CEvNS Efforts Worldwide [incomplete]

Experiment	Technology	Location	Source
COHERENT	Csl, Ar, Ge, Nal	USA	πDAR
ССМ	Ar	USA	πDAR
ESS	Csl, Si, Ge, Xe	Sweden	πDAR
CONNIE	Si CCDs	Brazil	Reactor
CONUS	HPGe	Germany	Reactor
MINER	Ge/Si cryogenic	USA	Reactor
NUCLEUS	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	Reactor
vGEN	Ge PPC	Russia	Reactor
RED-100	LXe dual phase	Russia	Reactor
Ricochet	Ge, Zn bolometers	France	Reactor
TEXONO	p-PCGe	Taiwan	Reactor

+ DM detectors, +directional detectors +more...(NEON, SBC...) many novel low-background, low-threshold technologies!!

CEvNS detection at reactor

*values reported by experiments

Final results from CONUS Ge @ Brokdorf

quenching description	prediction	Run-5 limit (90% C.L.)
Lindhard (k=0.162 [22])	91^{+11}_{-9}	143
linear low E excess [24]	645^{+59}_{-90}	99
cubic low E excess [24]	$ 115^{+13}_{-11}$	122

Summary of CEvNS Results

Summary of CEvNS Results

Summary of CEvNS Results

Limits on reactor CEvNS in Ge, Si... looking forward to more soon!

Summary

- CEvNS:
 - large cross section, but tiny recoils, $\alpha~\text{N}^2$
 - accessible w/low-energy threshold detectors, plus extra oomph of stopped-pion neutrino source
- First measurements by COHERENT: Csl[Na], Ar, now Ge!
- Meaningful bounds on beyond-the-SM physics

- It's still just the beginning.... Nal+more Ge+more Ar +.. soon
- Multiple targets, upgrades and new ideas in the works!
- New exciting opportunities with more SNS power + STS!
- Other CEvNS experiments are joining the fun! (CCM, TEXONO, CONUS, CONNIE, MINER, RED, Ricochet, NUCLEUS, NEON, SBC...)