The state of the art and future **CMOS** particle sensors for high energy physics

Magnus Mager (CERN) on behalf of the ALICE collaboration

Bormio Conference

60th International Winter Meeting **on Nuclear Physics**

> 22 - 26 January 2024 **Bormio, Italy**

Outline

CMOS image/particle sensors

- motivations
- working principle

State of the art

- 180 nm MAPS technology (ALPIDE, ALICE ITS2, CBM, Belle II et al.)
- reaching full depletion
- other developments (HVMAPS, SOI)

Current future

- 65nm technology
- wafer-scale sensors
- bent detectors

Further future

Introduction

Pixel detectors ... are nowadays present *everywhere*

Nobel Prize in Physics 2009 Willard S. Boyle and George E. Smith "for the invention of an imaging semiconductor circuit – the CCD sensor."

Cut through a modern DSLR Pixel detectors are abundant (smartphones, surveillance, etc.) though mostly for (visible) light

CMOS image sensors ... are nowadays present *everywhere*

- Nowadays the most widespread implementation of image sensors
 - main advantage: price

- Light vs charged particles:
 - both generate electron/hole pairs
 - need to increase sensitive area to 100% (no focussing lenses for charged particles)

CMOS image sensor market rapidly growing

- Huge commercial interest
- A lot of development ongoing in industry
- Many developments are directly applicable to particle detectors
- Available in large quantities

Monolithic active pixel sensors (MAPS) working principle

This is the basic structure of "ALPIDE"-like sensors. A lot of effort is put into improving the charge collection/drift regions.

- Thin: O(50 μm)
- Very granular: O(10-30 µm)
- Small diodes: capacitances of O(1-5 fF)
- Highly integrated: O(100) transistors in-pixel

Performance and features in reach for production tomorrow

- Input capacitance: O(1-5 fF)
- Power density: 20-40 mW/cm² (30 µm pixels)
- Material budget: 0.05% (50 µm Si)
 - additional gain from low power consumption
- Pixel pitch: 10-30 µm
- Spatial resolution: O(5 µm)

The best tradeoff can to be chosen to fit the specific application

All parameters are still being improved a lot in oging R&D activities

- Time resolution: O(1 ns 1 µs)
 - intrinsic charge collection faster
 O(100 ps)
- Detection efficiencies: 100%
- Radiation hardness:
 - NIEL: 10¹⁵ 1MeV n_{eq}/cm^2
 - TID: several Mrad
 - SEE: mitigation techniques exist

State of the art

ALICE Inner Tracking System 2 (ITS2) the large-scale application of MAPS

- > 20k **ALPIDE** chips are currently working on detector > 70k chips produced, serving other experiments/ applications (sPHENIX, proton-CT, etc)
- Large step in the development of the technology

Magnus Mager (CERN) | CMOS particle sensors | Bormio | 26.01.2024 | 11

nner Barrel

ITS2 installation Insertion of first Outer Half-Barrel

ITS2 performance the noise floor is really that low

Offspring **SPHENIX**

Copy of ALICE ITS2 Inner Barrel

Installed and taking data

Reaching full depletion process variants

- Process modification as side activity of ALICE R&D
- Further optimised within ATLAS R&D
- Full depletion: faster charge collection, higher radiation hardness

Families of more developments selection

- CLICTD, MALTA, Fastpix, MIMOSIS, **OBELIX**, **CEPC** chips
 - 180 nm TJ (and similar) with different optimisations and applications

- HVMAPS: MuPix, TelePix, ATLASPix
 - different approach: large collection well in which the electronics sits

SOI: isolation layer to separate electronics

The number of developments is increasing quickly!

Current future

Next technology node: 180 nm \rightarrow 65 nm qualifying the TPSCo 65 nm CMOS Imaging Technology

Key benefits:

- smaller features/transistors: higher integration density
- smaller pitches
- lower power consumption
- larger wafers
- ALICE ITS3 together with CERN EP R&D
 - leverages on experience with 180 nm (ALPIDE)
 - excellent links to foundry
- Comprehensive *first* submission: **55** prototypes - works excellently!

Qualification of 65 nm CMOS 2 selected results

- Intrinsic time resolutions of 77 ps for 10 µm pixels

Wafer-scale sensors: stitching

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board

Principle of photolithography

200 mm ALPIDE prototype wafer

FPC + chips

Wafer-scale sensors: stitching

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board
- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - a 300 mm wafer can house a chip to equip a full half-layer
 - requires dedicated chip design

Principle of photolithography

Wafer-scale sensor

100

what we "design"

wafer

CERN

top part

Magnus Mager (CERN) | CMOS particle sensors | Bormio | 26.01.2024 | 23

CERN

repeated part (1)

repeated part (2)

repeated part (3)

final circuit is a concatenation of different parts of the masks

wafer (ø=300 mm)

Magnus Mager (CERN) | CMOS particle sensors | Bormio | 26.01.2024 | 27

CERN

Chip development roadmap status and plans

MLR1: first MAPS in TPSCo 65nm (2021)

successfully qualified the 65nm process for particle detectors

ER1: first stitched MAPS (2023)

- large design "exercise"
- "**MOSS**": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 µm²): conservative design, different pitches
- "**MOST**": 2.5 x 259 mm, 0.9 MPixel (18 x 18 µm²): more dense design

oresent

ER2: first ITS3 sensor prototype (2024)

ER3: ITS3 sensor production (2025)

Prototypes: handling ER1

- ER1 wafers are thinned down to 50 µm
- Tools to pick, handle and ship chips have been developed

A set of dedicated tools have been developed — handling is under control

MOSS test beams

- result!

MOSS test beams Detection efficiencies and fake-hit rates

Operational with a bit of margin – NB: bias settings are still being optimised

Flexibility of silicon

- Monolithic Active Pixel Sensors are quite flexible
- Bending force scales as (thickness)-3
 - large benefit from thinner sensors

Bending ALPIDE example tension wire

and the second

50 µm-thick ALPIDE

foil

0

R = 18 mm jig

Bent MAPS (2)

- Functional chips (ALPIDEs) are bent routinely
 - chips continue to work
 - tested at several beam campaigns
- Complete tracking detectors, called "µITS3" were built and used:
 - 6 ALPIDE chips, bent to the target radii of 18, 24, 30 mm

This is a complete detector with unprecedented performance figures

µITS3 X-ray tomography

beam

(Cu target)

30 1111

uITS3 X-ray tomography

→ poster by Berkin Ulukutlu

Bending of wafer-scale sensors procedure

ERHEITSGEFAS

R = 30 mm50 µm dummy silicon

Magnus Mager (CERN) | CMOS particle sensors | Born

20.01.2024 39

Bending of fully processed wafers (48x speedup)

 \bigcirc

 (\mathbf{E})

R = 18 mm 50 µm fully processed silicon

0

→ poster by Anna Vilani

Magnus Mager (CERN) | CMOS particle sensors | Bormio | 26.01.2024 | 40

ORDERED DE LEURINE DE LEURINE

TRADUCTOR DEPENDENCE OFFICE

A COLUMN LIER COLUMN COLUMN

CHARLES THE DECEMBER OF THE PARTY

AND THE TRADE OF THE OWNER.

Further future

New modularisation ideas example: "MAPS foils" — chips within printed circuit boards

- Very thin and robust modules can be built
- Interesting for many applications, especially those looking at larger areas

CMOS with gain

- Adding again layer below the sensor
- Potentially reduced power (larger signal) and increases timing performance
- First prototypes recently became available and are under test right now

[ARCADIA MadPix]

3D integration

[ISSCC, Feb 2017]

- Industry moves towards stacks of chips
- Resulting stacks are still very thin
- This (again) opens up sever opportunities for us

40µm

V

- Several technologies can be combined (e.g. pixel array from vendor A, readout chip from vendor B)
- Effect on design effort to be seen

ALICE 3 (LHC LS4, 2033-34)

the next concrete large-scale HEP application

- Largely based on CMOS technology
 - ultra-precise (2.5 µm resolution) in-vacuum vertex detector
 - large-area (O(60 m²)) vertex detector
 - time of flight (20 ps)
- Relies on expertise gained with current developments (ALICE ITS2, ITS3)
- Will be a main driver for the technology development for the next decade
- De-facto prototype of an FCC-ee detector

	Run 3				LS3		
2021	2022	2023	2024	2025	2026	2027	
[LHC	timeline	Ə]					

Summary & Outlook

- CMOS technology advances rapidly
 - as community, we largely benefit from this commercial success
 - significant improvements designs in terms of integration density, power consumption, radiation hardness, and readout speeds over last years
 - commercially available and easily obtainable in large quantities
- ALICE ITS2: 10 m² MAPS detector, fully commissioned and operational
 - project-driven development, propelled the technology -
- Now pushing the technology further:
 - non-planar geometries: **bending**
 - deeper sub micron technology node: 65 nm
 - wafer-scale sensors: stitching
- CMOS sensors are a technology of choice for many future applications

