Results and status of the CUORE & CUPID neutrinoless double beta decay search

BORMIO'24, Benjamin Schmidt for the CUORE & CUPID collaborations

Neutrino - Majorana/Dirac particle?

Neutrino mass scale

- Neutrinos are massive
- Mass scale is 6 orders below the mass of other leptons

Two theories - Majorana versus Dirac

- Majorana Allows Lepton Number Violation
 Allows neutral leptons to be their own anti-particle
 - Potential to explain Baryogenesis through Leptogenesis matter generation
 - Potential to explain smallness of neutrino mass scale

"Teoria simmetrica dell'elettrone e del positrone". Il Nuovo Cimento. **14 (1937)**

$$\begin{aligned} \text{Majorana neutrino phenomenology - Pontercorvo-Maki-Nakagawa-Sakata (PMNS) Matrix: Majorana phase} \\ U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Neutrinoless double beta decay Light Majorana neutrino exchange

Observables

- $\Delta L = 2$, lepton number violation
- Majorana nature of neutrino?

$0\nu\beta\beta$ The parameter space

The experimental challenge

Probe a process with a half-life larger > 10^{25} yr - 10^{26} yr

Next generation experiments:

Need to find single events in a ton of isotope x year(s) of exposure! Or search for an activity at the level of 3×10^{-14} Bq/g We go to extreme length to limit ubiquitous radioactivity

Cryogenic Underground Observatory for Rare Events CUORE collaboration

https://cuore.lngs.infn.it/

27 institutions from 4 different countries (Italy, US, France, China)

Cryogenic calorimeters in a nutshell

Current cryogenic flagship experiment CUORE

At LNGS ~ 3600 m.w.e.

External shielding: 25 cm Pb, 18 cm PET + 2 cm H₃BO₃

Internal shields: 6 tons of lead < 4 K

Detector 988 TeO₂ crystals: 742 kg of TeO₂, 206 kg of ¹³⁰Te,

CUORE - Operations & Data taking

Operational performance

Analysis selection:

On avg. 934 / 984 channels (95) % _(1TY analysis) Exposure accumulation: ~ 50 kg yr / month Goal: 3000 kg yr Highly efficient:

- ~80% science operation,
- ~14% optimisation (noise environmental monitoring)
- ~6% maintenance/down time

CUORE - Data

Counts/(keV·kg·yr)

Overall analysis efficiency 93.2%

 $(0.10^{-2} \text{ counts/keV/kg/yr})$

Benjamin Schmidt, CUORE & CUPID

$0\nu\beta\beta$ result - 2nd TY

Outlook/Ongoing: Fully reprocess 1st TY with denoising to provide improved analysis of full exposure

Cez

CUPID collaboration

140 collaborators from 7 countries <u>https://cupid.lngs.infn.it/</u>

CUPID - CUORE upgrade with particle identification

CUPID-0 | CUPID-Mo two demonstrators for CUPID

ZnSe dual heat+light readout

1st quantitative results for α identification & rejection > 99.9 % α rejection

 $\Delta {\rm E}$ = 21.8 keV @ $Q_{\beta\beta}$ (2998 keV) Background: 4 x 10⁻³ counts/keV/kg/yr (Muons, Crystals, Shields)

CUPID in a nutshell

Step-wise validations:

Li_MoO_crystals

detectors

JINST 18 P06033 (2023) Eur. Phys. J C82, 810 (2022) Eur. Phys. J. C81, 104 (2021)

Design:

- CUORE cryostat & shielding,
- 1596 Li₂¹⁰⁰MoO₄ detector modules (light & heat)
- 240 kg of ¹⁰⁰Mo (>95% enrichment)
- Additional muon-veto system & neutron shields

Objectives:

- Energy resolution
 5 keV FWHM at 3034 keV
- Bg index: 10-4 counts/keV/kg/yr
- + $0\nu\beta\beta$ exclusion sensitivity after 10 years: 1.4 x 10^{27} yr

18

CUPID BG projection

Phys. Rev. Lett. 131, 222501 (2023)

Benjamin Schmidt, CUORE & CUPID

CUPID BG projection - Improvements

CUPID BG simulation

Improvements to be evaluated:

- New simplified mechanical tower design
- —> Less machining & handling
 - Contact-less production with laser cutting

—> Improved radiopurity during construction & storage

CUPID - Improvements: NTL light detectors

Newly adopted NTL light detectors ->Pile-up can be reduced to less than 5 x 10⁻⁵ counts/keV/kg/yr

Conclusions & Outlook

Cez