
Exciting News From 
Fundamental Physics
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My research team does 
many amazing things
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What will we talk 
about today?

Electroweak Precision  
Physics at ATLAS

Quantum Chromo Dynamics at 
Low Energies 

Tau Neutrino Physics

Searches for Axions and 
Gravitational Waves
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Quantum Chromo 
Dynamics at Low 
Energies at the LHC



Fundamental 
Aspects in QCD
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The Lagrangian

Covariant Derivative Gluon Field Tensor 

▪ Free Parameters 
▪ Quark Masses (by Higgs Yukawa Coupling) 
▪ Coupling Constant g, known as strong coupling constant ⍺s
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Running of ⍺S and perturbative QCD

▪ QCD (as all other QFT) predicts a 
running of ⍺S 
▪ Confinement 
▪ Asymptotic Freedom 
▪ Energy Dependence of ⍺S known to 

high precision 

▪ Nearly all QCD predictions are 
based on perturbative calculations 
▪ Strong coupling constant must be 

small that the perturbative series 
converges 

▪ Only valid at high energies 
▪ Predictions for several processes 

available at next-to-next-to-next-to 
leading order 

▪ Amazing agreement between 
theory and data
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Non-Perturbative QCD

▪ Nearly all physic studies at 
ATLAS and CMS aim at high 
energies 
▪ However, small energy scales are 

always there in addition 
▪ We have nearly no predictions 

based from first principles 
▪ Non-Perturbative QCD is 

therefore always based on 
phenomenological models 

▪ Essentially all Heavy Ion Physics 
is Non-Perturbative QCD 
▪ While QGP should be described 

by the dynamics of QCD, we have 
no way to derive that 

▪ Arn’t there any examples, where 
we have (reliable) predictions at 
low energies? 



The Strong 
Coupling Constant
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Why is the strong Coupling 
Constant important?

▪ The strong coupling constant 
is present in all perturbative 
predictions at the LHC 

▪ Its measurement at different 
scales might be sensitive to 
physics beyond the SM 

▪ Testing the unification of forces 

▪ And my own motivation: 
Measure fundamental 
constants of nature better than 
anybody else
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How to measure the strong 
Coupling Constant

▪ Most straight forward approach: 
Look at 3-jet over 2-jet ratios 
▪ Disadvantage: Final states interact 

with each other and induce large 
theory uncertainties on the 
observable 

▪ Many other approaches: Tau-
Lepton Decay, Parton Density 
Function Fits, Event shapes … 

▪ Most Precise Determination 
▪ Use Lattice QCD predictions of 

hadron mass spectra, leave ⍺s free 
and fit to observed data
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The Drell-Yan Process

▪ Drell Yan Process describes the creation of lepton pairs in proton-proton 
collisions via the Z boson exchange 

▪ We except transverse momentum of Z boson only at higher orders
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Relation between PT(Z) and ⍺S

▪ The Sudakov Region shows a 
high dependence on the strong 
coupling constant 
▪ … and can be precisely 

predicted 

▪ Non-Perturbative Regime 
▪ Sudakov Region 
▪ Perturbative Regime
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The Prediction of PT(Z)

▪ Sudakov region can be described 
by resummation approaches 
▪ emission of soft-gluons in the initial 

state can be formally correct 
described in powers of the strong 
coupling constant αs 

▪ DYRes: Resummed Calculation 
with public code https://arxiv.org/abs/

1507.06937 

▪ DYTurbo: Reimplement 
Integrations of DYRES using the 
Cuba library and in the Cubature 
packagehttps://arxiv.org/pdf/1910.07049.pdf 
▪ Speed-Up by a factor of 10-20 
▪ This allows for many different 

predictions for various model 
scenarios
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How to measure of PT(Z)

▪ Some trivial things to do 
▪ Correct for detector effects 
▪ Experimental precision at per-mille 

level 
▪ Extrapolate to full-phase space 

▪ Problem 
▪ Extrapolation induces theory 

uncertainties (similar size than 
experimental precision) 

▪ Solution 
▪ Make use of Decomposition of 

Drell-Yan process in angular 
coefficients 

▪ Perform multi-dimensional template 
fit to data
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Determination of ⍺s(mZ) from pT(Z): 
CDF at 1.96 ZeV, ATLAS at 8 TeV

▪ as(mZ) fit to the double-differential pT-yZ cross section measured in full-lepton phase 
space 

▪ Postfit χ2/dof and CDF (41/53) and ATLAS (82/72) 



Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 18

Results and Uncertainties

▪ Experimental Uncertainties can be further 
reduced 

▪ PDF Uncertainties will be reduced by 
combined fits at different center of mass 
energies 

▪ Non-Perturbative Effects seems to be small …
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The Final Result
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▪ Determination at N3LO+N4LL  

▪ Clean experimental signature 
(leptons) with highest exp 
sensitivity 

▪ Determination focusing on the 
Sudakov region (usually 
avoided to determine as) 

▪ Observable not suitable for 
inclusion in PDF fits  
▪ → no correlation with ⍺s(mZ) 

determinations from PDF fits 

▪ For 60th Birthday of Bormio: 
Preliminary Combination of 
CDF and ATLAS 
▪ Most precise determination of 
⍺s(mZ)=0.1185±0.0008



Topological 
Phenomena
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Early Universe

▪ Sakharov conditions: 
Baryogenesis 

▪ Baryon number B 
violation. 

▪ C-symmetry and CP-
symmetry violation. 

▪ Interactions out of 
thermal equilibrium. 

▪ Sphaleron Processes 
lead to a Baryon Number 
Violation  

▪ Conserve the difference 
between Baryon number 
and Lepton number 

▪ Violate the sum of the 
Baryon number and 
Lepton number
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What are Sphalerons 
and Instantons ? 

▪ What do you do in typical Quantum 
(field) theories? 
▪ Look for a minimum & apply perturbation 

theory 
▪ Sometimes there are also other solution 
▪ “Instanton” processes in non-relativistic 

QM describe tunneling transitions of 
finite action 

▪ Looking at Lagrangian of YM 
theories 

▪ also degenerate vacua (differ by ∆NCS = 1) 
▪ same approach: we apply perturbation 

theory 
▪ ’t Hooft: concept of instanton solutions can 

be extended to Yang-Mills theories
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Instantons and Sphalerons in 
the Electroweak Sector 

▪ Electroweak instanton and sphaleron 
processes imply B + L violation 

▪ What is the cross-section in p-p 
collisions? 
▪ perturbative approach cannot be used 

▪ Height of the energy barrier between two 
vacua depends on the underlying theory.  

▪ αweak coupling constant 
▪ ρeff the effective instanton size 

▪ Several calculations e.g. Ringwald (2002) hep-ph/0212099 

▪ Problem: Exponential suppression with MSp 
▪ too small for any current or future collider
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Instantons and Sphalerons

▪ Sphaleron and Instanton 
processes seem to be crucial for 
our understand of the cosmic 
evolution 

▪ However: We have never 
observed them experimentally! 

▪ It would be cool to see them! 
▪ We need to look at a QFT theory, 

where the barrier between two 
vacua is low!  

▪ Any ideas?
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Instantons in QCD 

▪ QCD Instantons are a possible 
solution to the axial U(1) problem 

▪ Their observation would be 
▪ A first proof of the vacuum-structure of 

QCD 
▪ a way to study chiral symmetry breaking 

▪ Barrier height is governed by ⍺s 

▪ Large ⍺s → small barrier → large cross 
section 

▪ What is the cross-section in proton-
proton? 
▪ Recent calculations are based on the 

optical theorem arXiv:2010.02287v3 
▪ Problem: Huge uncertainties (x101-103)
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Signatures of QCD 
Instantons 

▪ Treat Instanton solution as the 
generation and the decay of a Pseudo-
particle with variable mass M 
▪ No resonance peak, but a falling spectrum 

▪ Instanton production and decay process 

▪ Chirality violation: 1 right-handed quark 
and 1 anti-particle of the left-handed quark 
for each accessible flavor (for ∆NCS = 1) 

▪ Problem: not clear which Instanton mass is 
required e.g. for b-quarks (50 GeV?) 

arxiv.org/abs/2101.02719v2 

▪ A certain (large) number of gluons 
▪ Problem: Not clear how many (5-10)



Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 27

Searches at the LHC: 
Event Characteristics 

▪ Experimental Signatures (arXiv:2012.09120v1) 

▪ Many tracks 
▪ Spherical events 
▪ Potentially displaced tracks 
▪ Tracks localized in eta 

▪ Backgrounds for low mass Instantons 
(20-40 GeV) 
▪ Underlying Event 
▪ Multiple Parton Interactions
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Searches at the LHC: Event 
Characteristics – Experimental Challenges 

▪ How to distinguish QCD Instanton 
events from SoftQCD Models? 

▪ Multiple Parton Interactions (MPI) also 
lead to high multiplicity, spherical 
events 

▪ Problem: These signatures are already 
included in the MC Generator tunes! 
▪ Are Instantons tuned away?
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ABCD Method with 
Neural Networks

▪ ABCD method 
widely used to 
estimate 
background in a 
data-driven way 

▪ New approach 
uses two 
decorrelated 
classifiers to 
optimise signal 
selection and 
background 
estimation 
arXiv:2007.14400



Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 30

More Theory Developments 
Needed! 

▪ Status Quo 
▪ One approach to calculate the cross-

section of QCD Instantons 
▪ Implementation in Sherpa3.0 for the 

decay of QCD Instantons available (by 
Frank Kraus) 

▪ We need alternative approaches to 
calculate the Instanton cross-section  

▪ The decay of QCD Instantons is 
subject to hadronization and color-
reconnection 
▪ We need different generators! 

▪ The most striking feature of QCD 
Instanton decays is the chirality 
violation 
▪ We need hadronization models which 

preserve the chirality information
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Evidence of Sphaleron 
Processes in Diffractive Events?

▪ UA8 Experiment in p-p collisions at 630 GeV 
▪ Double-Pomeron production hep-ex/0205037 
▪ Unexpected peak at 2-8 GeV 
▪ Theory Prediction by E. Shuryak and I. Zahed 

arXiv:hep-ph/0302231v1

▪ Looking at angular 
distributions of final 
states: 
▪ Observe spherical 

symmetrical 
distribution for <5 GeV 

▪ Observed „forward“ 
distribution for >5 GeV 

▪ Sphaleron?



Prof. Dr. Matthias Schott

Summary
▪ Most precise (combined) measurement of 

the strong coupling constant presented 
here in Bormio 

▪ Physics at the LHC is not only fun at high 
energies 

▪ Precision Physics at the LHC relies on the 
understanding of non-perturbative effects 

▪ Topological aspects of QCD deserve 
more attention, as they tell us about the 
beginning of the universe!
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For to fit ⍺s(mZ)  

▪ At each value of ⍺s(mZ) the βk,th terms explore the PDF 
space to find the best fit to the pT(Z) data  

▪→ equivalent to including the new dataset in the PDF 
without refitting, using profiling/reweighting Eur.Phys.J.C 75 

(2015) 9, 458 

▪ The non-perturbative form factor is added with 
unconstrained nuisance parameters (b = 0) i.e. left 
free in the fit 

▪ Fit the region of pT(Z) <29GeV

▪ DYTurbo interfaced to xFitter arXiv:1410.4412 

▪ Evaluate χ2(⍺s) with as variations as provided in LHAPDF  

▪ Include experimental (βj,exp) and PDF (βk,th) uncertainties in the χ2



Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 34

Searches at the 
LHC: Rapidity Gaps 

▪ Alternative Solution: Look at 
Pomeron-induced production 
process Khoze et. al. arXiv:2104.01861v2 

▪ Large Rapidity Gaps (LRG) 
▪ each MPI qq→ dijet even will be 

accompanied by the color flow created 
by the parton cascade 

▪ Signal Selection: Reconstructed 
mass 20 – 60 GeV in the events 
with an LRG  
▪ detecting the leading forward proton 

with beam momentum fraction close to 1 
▪ No activity in the forward calorimeters



Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 35

Non perturbative 
QCD model

▪ NP model is generally determined from the data, parameters values depend on the 
chosen prescription to avoid the Landau pole in b-space

▪ gj functions include a quadratic/quartic term: g and q free parameters of the fit 
▪ The theory should not depend on blim (freezing scale) and Q0 (starting 

scale), provided SNP is flexible enough. Q0 and blim estimated as 
parameterisation unc. 

▪ g0 controls the very high b (very small pT) behaviour, should be fitted to data, 
but we have no sensitivity to it, so it is varied 

▪ Lambda controls transition from Gaussian to exponential: varied between 0.5-2 
▪ Test Non-Perturbative effects by excluding 0-5 GeV region
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Non-Perturbative effects which 
should be investigated more

▪ Intrinsic kT (transverse 
momentum of partons) can be 
studied  

▪ Only Pheno-Models available 
▪ Tune intrinsic kT parameters at 

low DY mass processes (Little 
room for QCD evolution)  

▪ Maybe more problematic 

▪ Resummed calculations do not 
consider diffractive production of 
vector Bosons 

▪ Cross-Section is at %-level 
▪ Difference on pT(ZDiff) directly 

impacts ⍺s determination


