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1. Physics motivation

* The innermost layers of the ALICE Inner Tracking System (ITS2) will be replaced The ITS3 will be realized using the MAPS technology: e
with a new tracker during LHC Long Shutdown 3 (2026-2028), the ITS3 [1].  Read-out logic and sensitive volume in the NS S
* This upgrade will further improve tracking efficiency and pointing resolution same silicon crystal N
especially for low momentum particles, thus allowing to improve the precision of e Complete in-pixel CMOS circuitry
measurements in the heavy-flavour sector and to bring another set of e Ultra-thin silicon O(<50 pum)
fundamental observables into reach [2]. The Tower Partners Semiconductor Co. [3] 65 nm
 E.g.these measurements will be allowed: CMOS imaging process for MAPS was chosen for
» B? and A} at low transverse momenta the ALICE ITS3. Key advantages:
* Non-prompt D} and = decays in heavy-ion collisions * High radiation hardness
* Low power consumption
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3. Detector layout Cylindrical
structural
* 3 truly cylindrical self-supporting layers shell \

 Each layer made by 2 flexible MAPS sensors which:
* have alarge-area O(10x26 cm?)
e are ultra-thin (<50 pum)

e Ultra-light carbon foam structure keeps in position 31.5 mi
the sensors

* Innermost layer at 19 mm from the interaction point

* Unprecedentedly low material budget of 0.07% X,/layer
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5. Air cooling and interconnections

1. Characterization of the small-scale prototypes realized in the 65 nm technology. Air cooling avoids introducing

First production: Multiple Layer Reticle 1 - MLR1 structures in the active region
2. Performance and production yield evaluation of the large-area MOnolithic - keeps the material budget low

Stitched Sensor (MOSS). First production (2023): Engineering Run 1 — ER1 These requirements must be satisfied:
3. Qualification of the ITS3 final sensor * Sensor operating temperature <30°C —
A wide campaign of test is ongoing to qualify both small-scale and large-area  Temperature gradient in S
prototypes [4, 5]. the matrix region <5°C Simulated temperature gradient
. : Small-scale prototypes characterization . . : .
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* Response to X-rays:
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® Spatlal resolution Digital Pixel Test Structure (DPTS) in-beam detection efficiency
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. Bendlng tests [6] .
e — 6. Conclusions and outlook
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L ITS3 requirements

e I I e S » ITS3 will be installed during LS3 to be ready for LHC Run 4 (2029-2032)
— e » Sensor qualification on track:
 Demonstrated operability of bent MAPS
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