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Antimatter and gravity

e The theory of General Relativity has passed a number of stringent experimental tests (wii, c.m.

The confrontation between general relativity and experiment. Living Rev. Relativ. 2014, 17, 1-117)

e One of the principles of GR is the Weak Equivalence Principle (WEP): all objects fall at the
same rate, regardless of their internal composition or structure.

WEP is expected to hold for antimatter

A deviation from WEP could signal:

e incompleteness in our interpretation of gravity
e or the presence of new interactions (fifth forces), vector and scalar mediated forces that couple
to some combination of baryon and lepton number (arxiv:0808 3929)



Antimatter and gravity

Previous “free fall”’ experimental attempts:

e 1967: Fairbank and Witteborn tried to use positrons (prys. Rev. Lett. 19, 1049 (1967))
e 1989: PS-200 experiment at CERN tried to use (4 K) antiprotons (vucl. instr. and Meth. B, 485 (1989))
Failed: charged particles are susceptible to electromagnetic fields that are stronger than gravity

ALPHA as well as AEGIS and Gbar study gravity on anti-hydrogen because of its neutrality

e How much of antiproton is antimatter? (arxiv:1207.7358)
most of the inertial mass of an (anti)proton comes from its binding energy. Quark mass is ~1%



Antihydrogen Laser PHysics Apparatus
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The antimatter Factory

ALPHA (Antihydrogen Laser PHysics
Apparatus) located in the antimatter
factory where antiprotons produced in
a proton beam-target collision are
decelerated:

e The AD: pbar to an energy of 5.3 MeV
e The ELENA ring 107 pbar at 100 keV
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ALPHA Schematic

ALPHAg:
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ALPHAgQ magnets

In ALPHAQ:
e Three trapping regions
e Long+short octupoles: minimise field errors due to fabrication tolerance in central
(“precision”) region
e Precision region: designed to perform a 1% precision g measurement
e Butinthe 2022 measurement just the long octupole and the bottom trap were used
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Hbar production and detection in the bottom trap
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Hbar production and detection in the bottom trap
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Hbar production and detection in the bottom trap
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Hbar production and detection in the bottom trap
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ALPHAg measurement procedure

Magnetic fields and gravitational field act on Hbars: U=—ug- -B+mgygh
Goal: measure the gravitational acceleration of Hbar
Assumptions: ML = WH » M = My (Phys. Rev. Lett. 59, 26 — 6 July 1987), (Nature 475, 484-488 (2011))
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ALPHAg measurement procedure

e Magnetic fields and gravitational field act on Hbars: U=—ug- -B+mgygh
e Goal: measure the gravitational acceleration of Hbar
e Assumptions: ML = WH » M = My (Phys. Rev. Lett. 59, 26 — 6 July 1987), (Nature 475, 484-488 (2011))

General concept: Vertical position z (cm)
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ALPHAg measurement procedure

e Magnetic fields and gravitational field act on Hbars:

U=—pg-B+mpggh

e Goal: measure the gravitational acceleration of Hbar
e Assumptions: pg = g ,» Mg = My (Phys. Rev. Lett. 59, 26 — 6 July 1987), (Nature 475, 484-488 (2011))

General concept:

e measure total potential via the asymmetry A
between number of up annihilations and down
annihilations when releasing vertically the Hbars

AT — (N, ; — Ng;)/S;

e measure magnetic potential:
o via ancillary B field measurements

e This is repeated at different magnetic field

configurations (Biases)
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ALPHAg measurement procedure

Magnetic fields and gravitational field act on Hbars:
Goal: measure the gravitational acceleration of Hbar

U=—pg-B+mpggh

Assumptions: g = (g, Mg = My (Phys. Rev. Lett. 59, 26 — 6 July 1987), (Nature 475, 484-488 (2011))

General concept:

measure total potential via the asymmetry A

between number of up annihilations and down
annihilations when releasing vertically the Hbars
A7 = (Nys; — Nays)/Ss

measure magnetic potential:

o via ancillary B field measurements
This is repeated at different magnetic field
configurations (Biases)
subtraction of the effect of magnetic potential
in order to obtain the gravitational one

o in practice relation between potentials and

asymmetry is obtained from simulation
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Analysed data

The raw event
z-distributions for +10

g and physics sample 109 ® +10 g calibration sample,
-3.0g collected with a fast MAGB
-2.0g ramp-down of the upper/lower gate

e Background enriched calibration
sample (with no antip in the
experiment)

e +39g,%29g,%¥1.59,%19,%0.59g,0
g: physics sample, with fast (20 s)
ramp of the MAGB.

Counts/4cm

240 -20 0 20 40
down «— z [cm] — up

e Calibration samples and LoC ramp-down: to determine the detector response
e Physics sample: for the determination of the up-down annihilation asymmetries (A"?") for each

bias
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Model definition and calibration

e Likelihood for the release ramp annihilation positions Z in a given bias configuration (i bias
label):

1B 1 1
LZ A7, 5i) oc 5B T [S8i(1- 47 Yfalee)+ 5 S:(1+ A fulz)-Biffo(ze)
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The release asymmetry

Likelihood for the release ramp annihilation positions Z in a given bias configuration (i bias

label):

1
Li(Z;| AT, S;) ox e~ (Bit+Bi) H [552'(1—

ZeEZi

raw
Az'

faleer b5 S04 fuze)+ Bifi(20)]

The MAGB likelihood on the physics samples depends on t
raw asymmetry| A",

he number of signal events S. and the

To derive the release asymmetry A, A" is corrected

by the detector efficiency asymmetry D.

To obtain the gravitational acceleration of Hbar

(ag) a model of the Hbar release asymmetry

A vs bias is needed:

e From simulation as field measurements are
done in 1d and not in real time during the

Hbar release
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Systematic uncertainties

e From the maximum of the total likelihood

L(Zlag,D,8S) = Hﬁi[ZilAi"“w(ag, D), 8]

Obtained a, estimate with statistical uncertainty:

a, —075+0069

e Different sources of systematic
uncertainty, the most relevant are:
o uncertainty on D evaluated by setting a
gaussian constraint:

1 { (D_.UD)Q}
exp —2—2 5
2WU% 9p

L =L

o uncertainty on the simulation quoted
separately and included in the final
result

Fast ramp

Source o(g)
Statistical \ 0.06
Systematics
a) | Efficiency correction 0.11
b) Calibration sample size 0.03
¢) Calibration sample purity 0.00
d) Simulation sample size 0.02
e) Simulation interpolation 0.03
f)  Calibration/physics 0.00
g) Fit bias (for ay < 0.5) 0.01
H simulation
h) Energy distribution (A;"™ slope) 0.03
i)  Simulation B-field on-axis tuning 0.06
1) | Simulation off-axis model - 8-fold | 0.15 = 0.26/+/3
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Results

e After having treated properly the systematic uncertainties the local acceleration of Hbar towards
the Earth is estimated to be:

a, = [—0.75 £ 0.06(stat.) + 0.12(syst.) + 0.16(model)] g.

e Compatible with what is expected from General Relativity

1A —e— Normal gravity simulation 110
09 - —e - No gravity simulation 5 - 08
--e-- Repulsive gravity simulation el '
0.8 Experimental data - 0.6
0.7 % » ," - 04
# Nature 621, 716-722
0.6 J/ 0 1% £ (2023).
Q® 05 —o E https.//doi.org/10.1038/s41
>

0.4 4 - -02 & 586-023-06527-1
0.3 , B ~ -0.4
0.2 e - -06
0.1 - -08

ol I ! | I | ! ! 1.0



https://doi.org/10.1038/s41586-023-06527-1
https://doi.org/10.1038/s41586-023-06527-1

Conclusions

ALPHAg has the goal of testing the weak equivalence principle on anti-H

Result:
o Compatible with what is expected from General Relativity
o Demonstrated sensitivity to gravity effects on antihydrogen in the magnetic trap

Outlook:
o reach 1% precision via systematic uncertainty reduction, use of laser cooling and the
precision trap
o 10 precision goal probably not possible with this technique (other more precise techniques
could be implemented in ALPHAQ: atomic fountain and interferometry)
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Antimatter and gravity

Previous “red shift” based experiments:
e KO — anti-KO oscillation rate (physics Letters B Volume 452, Issues 3-4, 22 April 1999, Pages 425-433)
e measurements of cyclotron frequencies for the proton and the antiproton (pnys. rev. Lett. 66, 854 (1991))

e Haven't deviations from WEP on antimatter already been ruled out by previous experiments?

even considering a photon as an e+ e- pair a 5th force effect can appear in Hbar because it has
baryon number unlike the photon (arxiv.1207.7358)

e How much of antiproton is antimatter? (arxiv:1207.7358)
most of the inertial mass of an (anti)proton comes from its binding energy. Quark mass is ~1%

23
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Hbar detection

Analysis Coil -

e Hbars can be released by lowering the
confining magnetic fields
e Annihilation happens: products mostly pions
e Detectors:
o Radial field time-projection-chamber
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ALPHA-g detectors

Main detectors of the ALPHA-g apparatus:
e Radial Time Projection Chamber (TPC)
e Barrel Veto detector (BV): 64 bars of plastic scintillator,
each scintillator bar has a SiPM and is read out at both ends

Time to Digital
Converter

Analogue Sum
Scintillator bar Discriminator -
HE
S]]
(2]
i oar

eeeeeeee

e The main source of background in this measurement is
given by the cosmic rays

e The barrel veto was built with the purpose of reducing this
background

e Background suppression: with a BDT classifier which is given
as input 20 selection variables sensitive to the topological
differences between annihilation events and cosmic ray
events
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Model definition

e Likelihood for the release ramp annihilation positions Z in a given bias configuration (/
bias label):

1 B. 1 1
Li(Zi| A7, 5) oc e”EFB) T [C8i(1-AT™) falze)+5Si(1+AT™) fulze) +Bifolze)]
ze €4,
For each bias (i bias label)
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Model definition

e Likelihood for the release ramp annihilation positions Z in a given bias configuration (i

bias label): (1) (2) (3)
1 1
Li(Zi] A7, 51) oc ™ B TT ﬂ§si<1—A£“w>fd<ze> | 2sz-<1+A;~"aw>fu<ze>+Bz-fb<ze>|
Ze€Z;
Expected yields Probability density functions

(1) ag\;vrnwards released Ny; += %Si(l — Araw) il 2 j

Upwards released | 1lc. raw ___Intwo z bins:
(2) Hbar Nagi = 25:(1+ A7) fulze) [-32.8,-12.8] U [12.8,32.8] cm

(3) Cosmic ray B; Ful 2 J

background




Model definition

e Likelihood for the release ramp annihilation positions Z in a given bias configuration (i

bias label): (1) 2) (3)
1 1
Li(Zi| A7, 8;) oc eS80 T ﬂ§si<1—A£aw>fd<ze> g Si (L AT™) fulze) B fi(z)
ZeEZi
Expected yields Parameters
(1) Downwards released Ny, & %Sz'(l — ATow) e S, = N“I.+Nd/.: total number of signal
Hbar : events ( Hbar annihilations)
e A asymmetry between upwards
(2) Upwards released Nuji = 15:(1+ Arov) and downwards released Hbar:
Hbar : ’ |
A7 = (Ny; — Nas)/S;
(3) Cosmic ray B. Not corrected by detector
background i efficiency




Model definition

e Likelihood for the release ramp annihilation positions Z in a given bias configuration (i

bias label): (1) (2) (3)
1 1
Li(Zi| A7, 8;) oc eS80 T ﬂ§si<1—A£“w>fd<ze> g St (LA™ fulze) HBi (=)
Zeezi
Expected yields Probability density functions
|_ _____ h |
(1) Downwards released Ng; = %&(1 — ATow) | i _ _
Hbar : | Fixed from fit to 10
: ~—— g calibration
: | samples
(2) Upwards released Ny, = %Si(1+A;“aw) 1 fu(2e) |
Hbar ' .
R I
___________________________ ,
. ' ! From background
Cosmic ray : : fo(ze) |e— .
(3) background : B; i enriched samples




Regression with simulated model (S-curves)

e A model for the relation between the asymmetry and the total potential difference at the
mirrors A and G is obtained via simulation:

e Modelling Initial energy distribution
e Modelling of magnetic fields

1.0 ' ' ‘ ' ' ' 1.0
A.sim (a ) '0.8 e Simulation of the trajectories of
v g Hbar
0.8t 10.6
o GPR fitting used to extract the S-curves
0.6 102 » at intermediate a, values
[4)
00 E
> . . . . . .
(2]
0.4 s Assumed acceleration (Jg) |02 < ° Then.’ via SImUIat!On’. itis pQSSIble
’ ] Down 1.50 to write the total likelihood in terms
,' g' Down 1.25 -0.4 f .
- Down 1.00 —F— o ag-
0.2 " Down 0.75 —=— 106
. Down 0.50 —-%—- — (7.l ATAW
000 ==3== 108 E(Z|ag,D,S) _H‘C'L[Z'L|Ai (a97D>7S]
G e i B s | PP i
' 3 2 1 0 1 2 3 ' -
Bias (g) AF™(ag) — D

AT(q, D) = .
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Simulated model systematic uncertainties

Off-axis:

-studying the impact of possible magnet misalignment on the S-curves.

-effect of this misalignment on the S-curve intercept with A=0 was evaluated.

-The maximum shifts from the unperturbed configuration are found to be

+0.26 g (corresponding to the “octupole 8-fold” configurations). interpreted here as a
worst-case scenario
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GPR fitting of simulated S-curves

Points: from simulation,
error 1 sigma

Lines: mean prediction
from GPR

Bands: 95 % confidence
interval from GPR

Gaussian process regression summary

—— (Bias = -3.0) Mean prediction
(Bias = -3.0) 95% ClI

——— (Bias = -2.0) Mean prediction
(Bias = -2.0) 95% ClI

—— (Bias = -1.5) Mean prediction
(Bias = -1.5) 95% ClI

—— (Bias = -1.0) Mean prediction
(Bias = -1.0) 95% CI

—— (Bias = -0.5) Mean prediction
(Bias = -0.5) 95% ClI

—— (Bias = 0.0) Mean prediction
(Bias = 0.0) 95% CI

——— (Bias = 0.5) Mean prediction
(Bias = 0.5) 95% Cl

—— (Bias = 1.0) Mean prediction
(Bias = 1.0) 95% CI
(Bias = 1.5) Mean prediction
(Bias = 1.5) 95% Cl

——— (Bias = 2.0) Mean prediction
(Bias = 2.0) 95% CI

—— (Bias = 3.0) Mean prediction
(Bias = 3.0) 95% CI

-1 0 1 2 3
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Efficiency asymmetry

Being 7, and nq the efficiencies in detecting respectively up and down annihilations,
D is defined as 14—

1.8
1.6
>‘ 1-4'
1.21

1.0

Nu+nd ’

o« Calib.
4 v Fast ramp
=«  Slow ramp

Estimated assuming the proportionality
between the LOc counts and the MAGB counts:
LOc counts is proportional to the number of
anti-H that were trapped

4 " Sz 0

]| , ) - ’ . 7_'aw

L | ‘ + i { S ki (1 + D; AT)

| + 1 ‘ The different datasets highlighted in the plot
| ‘ | ‘ were fitted with a linear model.
~1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00 Yy =mzx+q Y = Si,O/Si
A : = AT

The obtained efficiency asymmetry is D = —0.03 £ 0.06
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1.8

1.6

1.2+

1.0

Efficiency asymmetry

e Calib.
Fast ramp
«  Slow ramp

LT

—~1.00 —-0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

A

assumption of proportionality between

LoC and the Hbar population before the
MAGB ramp might not hold due to Hbar
losses occurring between the two ramps

Systematic uncertainty on D is evaluated

by varying the numerator of y = SSO

and repeating the fit again for each
variation.

Cyst uncertainty found to be 0.02, to be
added in quadrature to the statistical
uncertainty of 0.06
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Magnetometry

Electron Cyclotron Resonance:

: e Microwave heating of electron plasmas
4 when microwave freq ~ cyclotron freq
e precision of the measurement: ~1072
Gauss
| \° e Slow measurement (~ min
11000 1 —¢ caljGlathd
10000 | NF \Meaburea ( Phys. Plasmas 27, 032106 (2020);
—706 > -650  -600  -550  -500  —450  —400 https://doi.org/10.1063/1.5141999)
Position (mm)
Magnetron-based magnetic field {onty showing ane n five measurements)
measurement: NN
e Measurement of magnetron frequency of 2 LY
electrons in Penning-Trap \
e For understanding dynamic evolution of the = 3
: : S
fields : N
e precision of the measurement: ~1 Gauss 3 B
e Fast measurement T R SO S

38



