

# **Measurement of the Beam-Normal Single-Spin** Asymmetry on <sup>208</sup>Pb

Dr. Anselm Esser

# **Previous Measurements in Mainz Q<sup>2</sup>-Dependence**

- Target: <sup>12</sup>C
- Beam energy: 570 MeV
- Beam current: 20 μA



### **Z-Dependence**

- $Q^2$ : 0.04 GeV<sup>2</sup>/c<sup>2</sup>
- Beam energy: 570 MeV
- Beam current: 20 μA



**Theoretical description:** 



# **New Experimental Set-up**

**Design priciples** 



- Interference term amongst one- and multiphoton exchange
- Important input for effective field theories

### **Experimental importance:**

• Background in parity violation experiments

### **Measurement:**

- Elastic scattering of polarised electrons on unpolarised targets
- Polarisation vector perpendicular to scattering plane

# State of Knowledge



Mainz Microtron

- Early digitisation of analog signals  $\Rightarrow$  Reduction of analog noise
- Power grid synchronous gate  $\Rightarrow$  Suppression of mains hum
- No information about beam polarity in detector readout section



- Acceptable agreement between existing theories and experiments for light nuclei
- Significant discrepancy for <sup>208</sup>Pb
- Central component for readout and control XILINX Zynq SoC

• 20 x 20 x 0.5 mm<sup>3</sup> • <sup>208</sup>Pb, 99.36 % purity • Active cooling at 5°C with water/glycol mix

- Custom build
- Fused silica radiator
- UV sensitive quartz window PMTs

In-house build

- NINO Discriminators
- 32 Channels
- FPGA readout

# Polarimetry

#### • Problem:

No dedicated polarimeter to measure vertical polarisation

- Multi-Stage Approach:
  - 1) Maximisation and measurement of longitudinal polarisation
- 2) Spin rotation with solenoid to vertical direction

### 3) Minimisation of remaining horizontal spin components





### **Preliminary Results**

E<sub>beam</sub> = 570 MeV = 20 μA  $= 0.04 \text{ GeV}^2/\text{c}^2$  $O^2$ 



### **Detector Alignment**



- Alignment of detector and elastic line at low beam currents
- Usage of existing tracking detectors
- Simultaneous measurement of Q<sup>2</sup>-distribution
- Tracking detectors switched off at high beam currents



## **Further Strategy**

**Short Term:** Increase statistics for <sup>208</sup>Pb

**Intermediate Term:** • Study energy dependence at lower beam energies (420 MeV, 315 MeV, 210 MeV) • Extend measurements to intermediate mass range (<sup>124</sup>Sn, <sup>184</sup>W)

#### Long Term:

• Measurement on <sup>208</sup>Pb at MESA at even lower energies (150 MeV, 55 MeV) with significantly increased statistics