60th International Winter Meeting on Nuclear Physics

EXPLORING the **MATTCP CENTER** of **NEUTR**(

Technische Universität |

- **Dense Matter in Neutron Stars: Speed of**
- Observational constraints from heavy neutron stars and binany mentars are a set of the set o
- Bayesian inference results and constraints on phase transitions

- Low-energy nucleon structure and a two-scales scenario
- Quark-hadron continuity and crossover
- Chiral symmetry restoration : from first-order phase transition to crossover Dense baryonic matter as a (relativistic) Fermi liquid

Bormio, 22-26 January 2024

Part One Equation-of-State of Dense Baryonic Matter : Empírical Constraints from Neutron Stars

NEWS FEATURE 04 Marc

The golden

physics has

nature

C Comparison

- Comparison k have complica
 - → Measurem

predictions?

- X¹^srays from hot spots on t

(NIGERIZTelescoperation)

These stellar remnants ar parameti they are finally starting to 2.3 -Adam Mann 2.2 2.0 Masses and [unsW] W 1.6 surface of 1.4 12 [Miller et al., Ast liller et al.

1.1

its into c

oerimen⁻

n inferer

simulation of a spinning neu

ronnorodnoncioarning for nouton stars | Lo

NEUTRON STARS : DATA (contd.)

Very massive and fast rotating galactic neutron star PSR J0952-0607 $M = 2.35 \pm 0.17 ~M_{\odot}$ R.W. Romano et al. : Astroph. J. Lett. 935 (2022) L17

equivalent non-rotating mass after rotational correction :

Tidal deformabilities from binary neutron star mergers (gravitational wave signals)

$$\tilde{\Lambda} = \frac{16}{13} \frac{(M_1 + 12M_2)M_1^4 \Lambda_1}{(M_1 + M_2)^5} + (1 \leftrightarrow 2)$$

 $\mathbf{M}=\mathbf{2.3}\pm\mathbf{0.2}~\mathbf{M}_{\odot}$

(Keck Observatory)

GWI708I7
$$\Lambda_{1.4} = 190^{+390}_{-120}$$

B.P.Abbot et al.: Phys. Rev. Lett. 121 (2018) 161101

CONSTRAINTS on EQUATION of STATE P(arepsilon)

from observations of massive neutron stars

Tolman - Oppenheimer - Volkov Equations

$$\frac{dP(r)}{dr} = \frac{G\left[\varepsilon(r) + P(r)\right]\left[m(r) + 4\pi r^3 P(r)\right]}{r\left[r - 2Gm(r)\right]}$$
$$\frac{dm(r)}{dr} = 4\pi r^2 \varepsilon(r)$$
$$M = m(R) = 4\pi \int_0^R dr r^2 \varepsilon(r)$$

Stiff equation-of-state $P(\varepsilon)$ required

Simplest forms of exotic matter (kaon condensate, quark matter, ...) ruled out

SOUND VELOCITY and EQUATION of STATE

ТΠ

NEUTRON STAR MATTER EQUATION of STATE

Bayesian inference of sound speed and EoS

NEUTRON STAR PROPERTIES (contd.)

L. Brandes, W. W., N. Kaiser: Phys. Rev. D 107 (2023) 014011; Phys. Rev. D 108 (2023) 094014.

Stiff equation of state -> central core densities in neutron stars are NOT extreme :

 $= 3.6 \pm 0.7 \,
ho_0 \,
ho_c (2.3 \, M_\odot) = 3.8 \pm 0.8 \,
ho_0$

$$0.16\,{
m fm}^{-3}$$

- almost constant neutron star radii $(\mathbf{R}\simeq \mathbf{12}\pm\mathbf{1}\;\mathbf{km})$ for all masses
- Extreme evidence for sound velocities $m c_s > 1/\sqrt{3}$ in neutron star cores
- **Evidence** against strong 1st order phase transition in neutron star cores not excluded: baryonic matter or hadron-quark continuous crossover
- No extreme central core densities even in the heaviest neutron stars: $ho \lesssim 4.5\,
 ho_0~$ for $M \le 2.3\,M_\odot$ ightarrow average baryon-baryon distance : ${
 m d} \gtrsim 1\,{
 m fm}$

and

Part Two Phenomenology, Models

Possible Dense Matter Scenarios

ΠП

Historical reminder: **SIZES** of the **NUCLEON**

- Low-energy QCD: spontaneously broken chiral symmetry + localisation (confinement)
 - **NUCLEON** : compact valence quark core + mesonic (multi $\bar{q}q$) cloud

FORM FACTORS of the NUCLEON

 $G_i(q^2) = G_i(0) + rac{q^2}{\pi} \int_{t_0}^{\infty} dt rac{Im G_i(t)}{t(t-q^2-i\epsilon)}$

 $\langle r_i^2 \rangle = \langle r_i^2 \rangle_{cloud} + \langle r_i^2 \rangle_{core} =$

$$\langle r_i^2 \rangle = \frac{6}{G_i(0)} \frac{dG_i(q^2)}{dq^2} \Big|_{q^2=0} = \frac{6}{\pi} \int_{t_0}^{\infty} \frac{dt}{t^2} S_i(t)$$

$$\boxed{qq} \int S_i(t) = Im G_i(t) / G_i(0)$$

$$t_c$$

$$t_c$$

$$t_0$$

$$\frac{6}{\pi} \left[\int_{t_0}^{t_c} \frac{dt}{t^2} S_i(t) + \int_{t_c}^{\infty} \frac{dt}{t^2} S_i(t) \right]$$

Examples: ISOSCALAR ELECTRIC and ISOVECTOR AXIAL FORM FACTORS of the NUCLEON

Isoscalar electric form factor $\,G_E^S(q^2)$ =

 \boldsymbol{d}

$$= \frac{1}{2} \begin{bmatrix} G_E^p(q^2) + G_E^n(q^2) \end{bmatrix} \quad \langle r_{E,S}^2 \rangle = \langle r_p^2 \rangle + \langle r_p^2 \rangle$$

$$\stackrel{1/2}{\simeq} = 0.84 \,\text{fm} \qquad \langle r_{E,S}^2 \rangle^{1/2} \simeq 0.77 \,\text{fm} \qquad \stackrel{\text{YH-Lin,}}{\underset{\text{H--W-Hamm}}{\overset{\text{H-W-Hamm}}{\underset{\text{U-G-Meißn}}{\overset{\text{H-W-Hamm}}{\underset{\text{REL}}{\overset{128}{(2022)}}}}$$
nce: "cloud" dominated by omega meson
$$-\frac{6}{m_{\omega}^2} \qquad \langle r_{core}^2 \rangle^{1/2} \equiv \langle r_B^2 \rangle^{1/2} \simeq 0.5 \,\text{fm}$$

$$\frac{1}{6} \langle r_A^2 \rangle q^2 + \dots \end{bmatrix} \qquad \stackrel{\text{RJ-Hill, P. Kammel, W.C. Marciano, A. Sirlin}{\underset{\text{Rep. Prog. Phys. 81 (2018) 096301}}}$$

$$\langle r_A^2 \rangle = (0.46 \pm 0.16) \,\text{fm}^2$$

$$+ \frac{6}{m_a^2} \qquad \langle r_A^2 \rangle_{core}^{1/2} \simeq (0.52 \pm 0.13) \,\text{fm}$$

MASS RADIUS of the NUCLEON

Trace of the QCD energy-momentum tensor

$$egin{array}{l} {}^{\mu
u}G^a_{\mu
u}+m_q(ar{u}u+ar{d}d)+m_sar{s}s|P
angle\ \langle r_m^2
angle=rac{6}{M_N}rac{dG_m(q^2)}{dq^2}\Big|_{q^2=0} \end{array}$$

Technische Universität Mü

TWO-SCALES Picture of the NUCLEON : implications for DENSE BARYONIC MATTER

Soft mesonic (multi-pion) cloud

- expected to expand with increasing baryon density along with
 - decreasing in-medium pion decay constant $f_{\pi}^{*}(\rho)$

Hard baryonic core governed by gluon dynamics

- expected to remain stable with increasing baryon density up until hard compact cores begin to touch and overlap

TWO-SCALES Scenario for **DENSE BARYONIC MATTER**

Baryon densities $ho \sim
ho_0 = 0.16 \, {
m fm}^{-3}$ tails of mesonic clouds overlap : two-body exchange forces between nucleons

• $ho \gtrsim 2-3
ho_0$

Soft $\bar{q}q$ clouds delocalize: **percolation** \rightarrow many-body forces

• $\rho > 5 \rho_0$ (beyond central densities of neutron stars) compact nucleon cores begin to touch and overlap at distances $d \lesssim 1\,{
m fm}$ (but still have to overcome repulsive NN hard core)

baryonic cores still separated, but subject to increasingly strong repulsive Pauli effects

K. Fukushima, T. Kojo, W.W. Phys. Rev. D 102 (2020) 096017

DENSE BARYONIC MATTER in **NEUTRON STARS** as a **RELAVISTIC FERMI LIQUID**

B. Friman, W.W. : Rhys. Rev. C100 (2019) 065807

Quasiparticles:

baryons "dressed" by their strong interactions and imbedded in mesonic (multi-pion) field

L. Brandes, W.W. : arXiv:2312.11937

Neutron Star Matter : Fermi liquid / dominantly neutrons + ca. 5 % protons

Landau effective mass $m_L^*(
ho) = \sqrt{p_F^2 + m^2(
ho)}$ **Baryon chemical potential** $\mu(
ho) = m_L^*(
ho) + \mathcal{U}(
ho)$ take median of $\mu(\rho)$ quasiparticle from Bayesian-inferred potential 6 neutron star EoS

QUASIPARTICLE POTENTIAL and **FERMI-LIQUID PARAMETERS** $m_L^*(\rho)$ from chiral nucleon-meson field theory & Functional Renormalisation Group Quasiparticle effective potential Landau Fermi-Liquid parameters $F_0 = rac{m_L^*\,p_F}{\pi^2}\,rac{\partial\mu}{\partial ho} - 1 \qquad F_1 = -rac{3\,\mathcal{U}}{\mu}$ $\mathcal{U}(ho) = \sum_n u_n \left(rac{ ho}{ ho_0} ight)^n$ 950 1000 6 900 $\mathbf{F_0}$ $m_L^*(ho)$ $\mathcal{U}(ho)$ 800 m_L^* 850 U 600 [MeV] [MeV] $\mathbf{2}$ 800 400 750 200 $\mathbf{F_1}$ 7004 5 $\left(\right)$ 0 5 ρ/ρ_0 ρ/ρ_0

Strongly repulsive correlations including many-body forces with $n \geq 2$

CHIRAL PHASE TRANSITION in **DENSE BARYONIC MATTER** ?

- Studies in chiral nucleon-meson field theory
- Mean-field approximation (MF) chiral first-order phase transition at baryon densities $ho \sim 2-3\,
 ho_0$ • Vacuum fluctuations (EMF) $_{f_{\pi}}^{\prime}$ shift chiral transition to high density
 - smooth crossover
- Functional Renormalisation Group (FRG) with **non-perturbative loop** corrections involving **pions** & **nucleon-hole** excitations : further enhancement of stabilising effects EMF
 - Chiral crossover transition at $\rho > 6 \rho_0$ far beyond core densities in neutron stars

M. Drews, W.W.: Prog. Part. Nucl. Phys. 93 (2017) 69 — L. Brandes, N. Kaiser, W.W.: Eur. Phys. J. A57 (2021) 243

CONCLUSIONS

- **Constraints on phase transitions in neutron star matter**
 - very stiff equation of state implied by Bayesian inference results
 - strong 1st order transition unlikely in neutron star cores
 - central baryon densities in neutron stars : $\rho_c < 5 \rho_0$
 - chiral phase transition shifted to crossover beyond $\rho > 6 \rho_0$
 - e.g. two-scales scenario: soft-surface delocalisation (percolation) followed by hard-core deconfinement at densities above ρ_c
 - many-body forces between baryonic quasiparticles

INFERENCE of **SOUND SPEED** and

58

EQUATION of STATE and SOUND VELOCITY boundary conditions

EQUATION of STATE and SOUND VELOCITY boundary conditions

Convergence issue in chiral EFT at densities $ho\sim 2\,
ho_0$

