

Precision Physics, **Fundamental Interactions** and Structure of Matter

MREX: The Mainz Radius EXperiment

Nikita Kozyrev

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Institute for Nuclear Physics, Johannes Gutenberg University Mainz

Neutron Skin

Neutron and proton density in nuclei are well approximated by 2-parameter Fermi distribution:

$$\rho(r) = \frac{\rho_0}{1 + \exp\left[(r - C)/a\right]}$$

When N = Z, ρ_n and ρ_p are almost the same. In heavier nuclei with N >> Z neutrons are pushed towards the nuclear periphery, creating neutron skin (NS). It is characterized by **NS thickness**:

$$R_{skin} = R_n - R_p$$
, $R_n = \sqrt{\langle r_n^2 \rangle}$, $R_p = \sqrt{\langle r_p^2 \rangle}$

Experimentally and theoretically produced R_{skin} in ²⁰⁸Pb have had large systematic uncertainties. But precise study of NS is crucial to restricting the Nuclear Equation of State.

Nuclear Equation of State

Nuclear Equation of State (EOS) describes the density dependence of the nuclear energy per nucleon:

 $\mathcal{E}(\rho, \alpha) = \mathcal{E}_{\text{SNM}}(\rho) + \alpha^2 \mathcal{S}(\rho) + \mathcal{O}(\alpha^4)$

where $\alpha \equiv (\rho_n - \rho_p)/(\rho_n + \rho_p)$ and **S(\rho)** is **symmetry** energy. Performing Taylor series around saturation density ρ_0 :

 $\mathcal{S}(\rho) = J + Lx + \frac{1}{2}K_{\text{sym}}x^2 + \dots,$ where $x = (\rho - \rho_0)/3\rho_0$ and $L \equiv 3\rho_0 \left(\frac{\partial S}{\partial \rho}\right)$

Here *L* is a **symmetry energy slope parameter**. *L* has strong correlation with R_{skin}, allowing for its model independent extraction from neutron skin thickness measurement.

Bridge between nuclear physics and astrophysics

Electron weakly couples to neutrons better than to protons, and coupling depends on polarization. Thus, R_n from asymmetry in **parity-violating electron scattering**:

$$A_{\rm PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2} \pi \alpha Z} \frac{F_{\rm W}(Q^2)}{F_{\rm ch}(Q^2)}$$

PREX-2 utilized this method to determine R_{skin} in ²⁰⁸Pb to be 0.28 ± 0.07 fm.

This is in tension with theory when combined with CREX result for R_{skin} in ⁴⁸Ca.

R_{skin} can also be restricted with astrophysical observables:

- Tidal deformability of a neutron star Λ_{\star} from LIGO-Virgo GW170817 observation gives upper limit on R_{skin} when combined with nuclear models
- Neutron star radius R_{\star} from **NICER** x-ray observatory measurement of the pulsar PSR J0030+0451 and corresponding L gives prediction for R_{skin}

These results are in **tension** with PREX-2, providing motivation to reproduce the measurement with **MREX**.

MESA, P2 and MREX

Mainz Energy-Recovering Superconducting Accelerator (MESA) will provide us with:

Raytracing

To simulate the tracks of the scattered electrons inside the detector set-up, the raytracing tool is used. **Target position** is chosen to:

- 155 MeV beam kinetic energy
- 150 µA beam current
- 85% beam polarization
- < 1% systematic uncertainty from</p> beam monitors (polarization etc.)

The **P2** experiment plans high-precision measurement of $\sin^2 \theta_{W}$ through parity-violating electron scattering on liquid hydrogen target.

By exchanging hydrogen with ²⁰⁸Pb target, MREX can use the same detector set-up to measure A_{PV} at the **same kinematics** as PREX-2.

- Match the average momentum transfer of PREX-2: $\langle Q^2 \rangle = 0.00616 (GeV/c)^2$
- Maximize signal from elastic electrons
- Minimize signal from inelastic events and secondary produced particles

Magnetic field is chosen to be 0.7T to bend most of inelastically scattered electrons.

The preliminary position of potential additional shielding is also chosen with raytracing.

Monte-Carlo simulation

General information

The P2 simulation framework⁽¹⁾ was modified for MREX. It uses **Geant4** to simulate interaction of:

- Electron beam with target
- Generated scattered electrons and secondary produced particles with the detector set-up
- It also includes the Cherenkov-detector response function. ⁽¹⁾ Eur. Phys. J. A 54, 208 (2018)

Inelastic and quasielastic scattering

Solenoid geometry leads to 25 MeV excitation energy **acceptance**. Precise modeling of non-elastic lines is necessary.

Cross section and asymmetry of quasielastic electron scattering at low Q^2 is uncertain.

Moving target upstream and **adding shielding** allow to reduce the acceptance and the rate of non-elastic events.

Measuring time

Simulation combined with theoretical predictions⁽²⁾ for A_{PV} and ε show the achievable measuring time to be:

- **110 hours** to reach 1% uncertainty for R_n (PREX-2)
- 1500 hours to reach 0.5% uncertainty for R_n

The exact measuring time depends largely on beam monitoring and quasielastic contribution, predictions for

Conclusion

Precise determination of NS thickness in ²⁰⁸Pb is a great tool for bridging Nuclear Physics. The results of the Monte-Carlo simulation of the forthcoming MREX show that it can be done in Mainz. We calculate corresponding systematic uncertainties and explore possibilities to reduce them, resulting in the reachable measuring time of 110 and 1500 hours to match or double PREX-2 uncertainty.