Correlations and Semi-Universal Relations Connecting Nuclear Matter and Neutron Stars

J. M. Lattimer

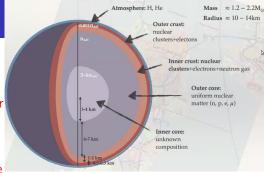
Department of Physics & Astronomy

60th International Winter Meeting on Nuclear Physics Bormio, Italy, Jan. 22–26, 2024

J. M. Lattimer Correlations and Semi-Universal Relations Connecting Nuclear

Acknowledgements

Funding Support:


- **DOE** Nuclear Physics
- DOE Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)
- NASA Neutron Star Interior Composition ExploreR (NICER)
- NSF Neutrinos, Nuclear Astrophysics and Symmetries (PFC -N3AS)
- DOE Nuclear Physics from Multi-Messenger Mergers (NP3M)

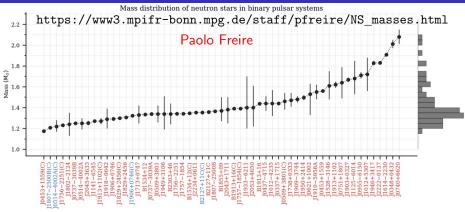
Recent Collaborators:

Boyang Sun (Stony Brook), Duncan Brown & Soumi De (Syracuse), Christian Drischler, Madappa Prakash & Tiangi Zhao (Ohio), Sophia Han (TDLI), Sanjay Reddy (INT), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee) & Ingo Tews (LANL)

Neutron Stars: Basics

- Nearly all known NSs are pulsars (rapidly rotating and highly magnetized) that emit X-ray, optical or radio beams from their poles, like a lighthouse.
- The radii of most NSs are about 12 km.

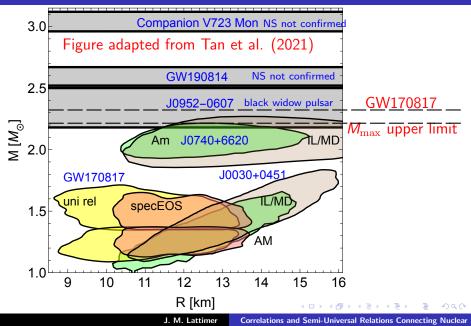
- Most, if not all, NSs are formed in the gravitational collapse of massive stars at the ends of their lives; some of those collapses produce black holes instead. Some massive NSs may be formed in the aftermath of a binary merger of two lower-massed neutron stars.
- The minimum possible NS mass is $0.1 M_{\odot}$, but none are observed to be less massive than $1 M_{\odot}$.


イロト イヨト イヨト イヨト

Pulsar Timing for PSR J0737-3039

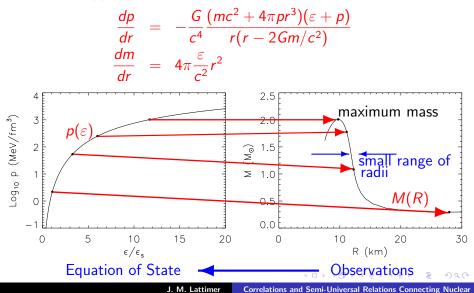
J. M. Lattimer

Masses of Pulsars in Binaries from Pulsar Timing

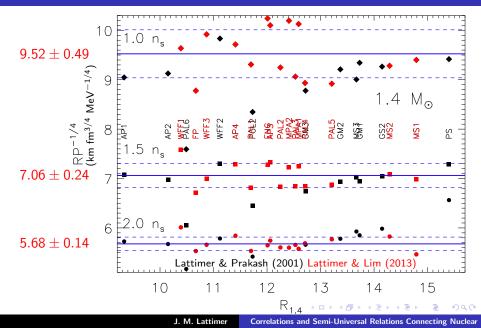

Largest: 2.08 \pm 0.07 M_{\odot} Smallest: 1.174 \pm 0.004 M_{\odot}

Several other NS masses have been measured by other means, including some estimated to be more than $2M_{\odot}$ (e.g., black widow pulsars) and smaller than $1M_{\odot}$ (HESS J1731-347), but their mass uncertainties are generally large $r \to r \to \infty$

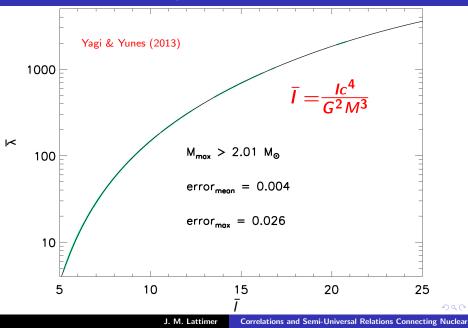
How Can a Neutron Star's Radius Be Measured?

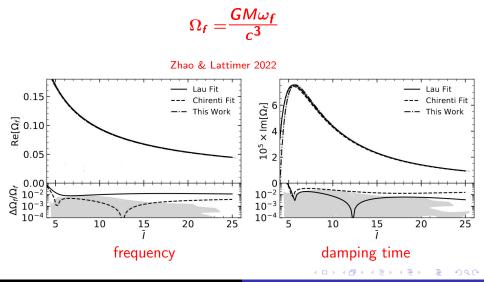

- Flux = $\frac{\text{Luminosity}}{4\pi D^2} = \frac{4\pi R^2 \sigma_B T_s^4}{4\pi D^2} = \left(\frac{R}{D}\right)^2 \sigma_B T_s^4$ X-ray observations of quiescent neutron stars in low-mass X-ray binaries measure the flux and surface temperature T_s . Distance D somewhat uncertain; GR effects introduce an M dependence.
- $F_{Edd} = \frac{GMc}{\kappa D^2}$ X-ray observations of bursting neutron stars in accreting systems measure the Eddington flux F_{Edd} . κ is the poorly-known opacity; GR effects introduce an R dependence.
- X-ray phase-resolved spectroscopy of millisecond pulsars with nonuniform surface emissions (hot spots). NICER: PSR J0030+0451, PSR J0437-4715 (closest and brightest millisecond pulsar) and PSR J0740+6620 (most massive pulsar).
- $R_{1.4} = (11.5 \pm 0.3) \frac{\mathcal{M}}{M_{\odot}} \left(\frac{\tilde{\Lambda}}{800}\right)^{1/6} \text{km}, \qquad \mathcal{M} = \frac{(M_A M_B)^{3/5}}{(M_A + M_B)^{1/5}}$ GW observations of neutron star mergers measure the chirp mass \mathcal{M} and binary tidal deformability $\tilde{\Lambda}$ (GW170817).
- $I \propto M_A R_A^2$ Radio observations of extremely relativistic binary pulsars measure masses M_A , M_B and moment of inertia I_A from spin-orbit coupling [PSR J0737-3039 ($P_b = 0.102d$), PSR J1757-1854 (0.164 d), PSR J1946+2052 (0.078 d)].

Summary of Astrophysical Observations

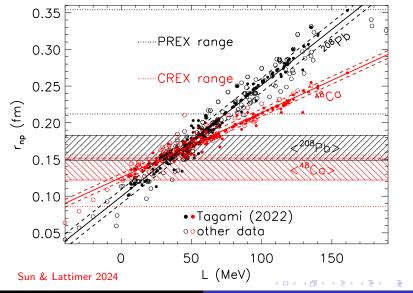


Neutron Star Structure

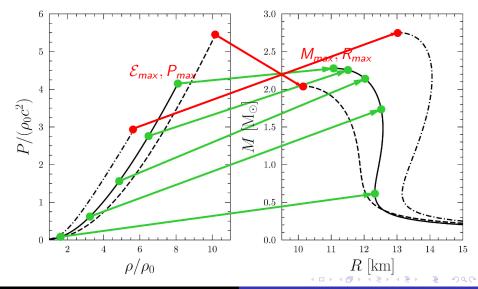

Tolman-Oppenheimer-Volkov equations


The Radius – Pressure Correlation

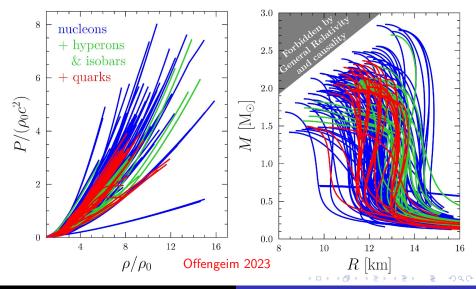
Tidal Deformatibility - Moment of Inertia



F-Mode Properties - Moment of Inertia


J. M. Lattimer Correlations and Semi-Universal Relations Connecting Nuclear

Neutron Skin Thickness - L


J. M. Lattimer

Maximum Mass As a Unique Scaling Point

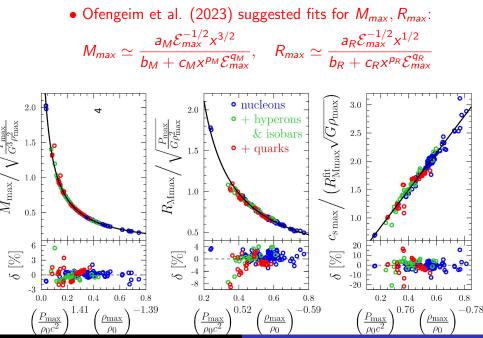
J. M. Lattimer Correlations and Semi-Universal Relations Connecting Nuclear

Varying the EOS

J. M. Lattimer

$M_{\max}, R_{\max}, \mathcal{E}_{\max}, P_{\max}$ Correlations

• Ofengeim(2020) fitted \mathcal{E}_{max} and P_{max} with the functions


$$\mathcal{E}_{max}, P_{max} \simeq \left[\frac{a_{\mathcal{E},P}}{R_{max}\cos\phi_{\mathcal{E},P} + (GM_{max}/c^2)\sin\phi_{\mathcal{E},P} + d_{\mathcal{E},P}}\right]^{s_{\mathcal{E},P}}$$

with accuracies of about 3% and 8%, respectively.

• Cai, Li and Zhang (2023) found a perturbative solution of the TOV equations in the parameter $x = P_c / \mathcal{E}_c$:

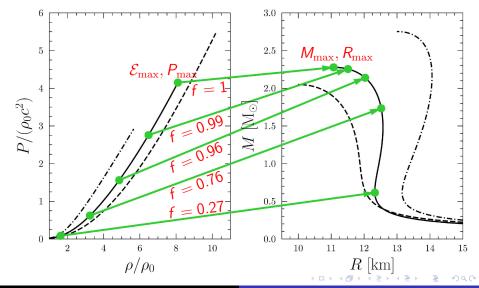
$$R \simeq \sqrt{\frac{3c^2}{2\pi G \mathcal{E}_c}} \left[\frac{x}{1+4x+3x^2}\right]^{1/2},$$
$$M \simeq \sqrt{\frac{54c^6}{\pi G^3 \mathcal{E}_c}} \left[\frac{x}{1+4x+3x^2}\right]^{3/2}.$$

At M_{max} , accuracies are 7% and 8%; at $1.4M_{\odot}$, they are 2% and 6%.

J. M. Lattimer

$M_{\max}, R_{\max}, \mathcal{E}_{\max}, P_{\max}$ Correlation

Ofengeim et al's finding suggest the power-law relations


$$\begin{split} \mathcal{E}_{\rm c,max} &= (1.809 \pm 0.36) \left(\frac{R_{\rm max}}{10 \rm km}\right)^{-1.98} \left(\frac{M_{\rm max}}{M_{\odot}}\right)^{-0.171} \rm GeV \ fm^{-3}, \\ P_{\rm c,max} &= (118.5 \pm 6.2) \left(\frac{R_{\rm max}}{10 \rm km}\right)^{-5.24} \left(\frac{M_{\rm max}}{M_{\odot}}\right)^{2.73} \rm MeV \ fm^{-3}, \end{split}$$

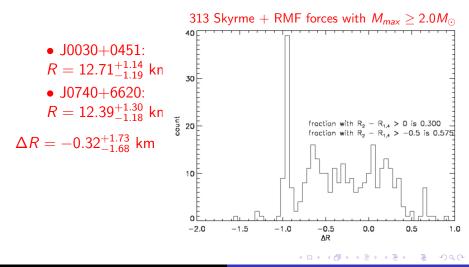
We find, in addition, that additional points along the M - R curve, at $M = fM_{max}$, have similarly accurate correlations:

$$\begin{aligned} \mathcal{E}_{c,f} &= a_{\mathcal{E},f} \left(\frac{R_{fM_{max}}}{10 \mathrm{km}} \right)^{b_{\mathcal{E},f}} \left(\frac{M_{max}}{M_{\odot}} \right)^{c_{\mathcal{E},f}}, \\ P_{c,f} &= a_{P,f} \left(\frac{R_{fM_{max}}}{10 \mathrm{km}} \right)^{b_{P,f}} \left(\frac{M_{max}}{M_{\odot}} \right)^{c_{P,f}}, \end{aligned}$$

向下 イヨト イヨト

Correlations at $M = \overline{fM_{\text{max}}}$

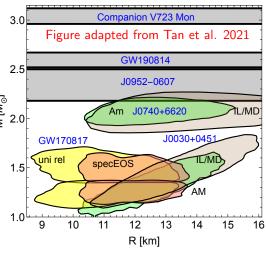
Correlations and Semi-Universal Relations Connecting Nuclear


J. M. Lattimer

Correlations with fM_{max} and 2 R_f Values

$ \begin{aligned} \mathcal{E}_{f} &= a_{\mathcal{E},f} \left(\frac{R_{f_{1}}}{10 \mathrm{km}} \right)^{b_{\mathcal{E},f_{1}}} \left(\frac{R_{f_{2}}}{10 \mathrm{km}} \right)^{c_{\mathcal{E},f_{2}}} \left(\frac{M_{max}}{M_{\odot}} \right)^{d_{\mathcal{E},f}}, \\ P_{f} &= a_{P,f} \left(\frac{R_{f_{1}}}{10 \mathrm{km}} \right)^{b_{P,f_{1}}} \left(\frac{R_{f_{2}}}{10 \mathrm{km}} \right)^{c_{P,f_{2}}} \left(\frac{M_{max}}{M_{\odot}} \right)^{d_{P,f}}, \end{aligned} $					
f = N	$M/M_{\rm max}$ $f_1 =$	$M_1/M_{\rm max}$ f	$f_2 = M_2/M_{\rm max}$	$\Delta(\ln \mathcal{E}_f)$	
	1	1	1/2	0.0046	uncertaintites
4	/5	2/3	1/2	0.0036	Ē
2	2/3	2/3	3/5	0.0051	ai
3	5/5	4/5	1/2	0.0025	ť
1	./2	2/3	1/2	0.0048	8
2	2/5	3/5	1/2	0.0047	5
f = N	$M/M_{\rm max}$ $f_1 =$	$M_1/M_{\rm max}$ f	$f_2 = M_2/M_{\rm max}$	$\Delta(\ln P_f)$	ed
	1	1	1/2	0.019	reduced
4	/5	4/5	1/2	0.0096	g
2	/3	2/3	3/5	0.014	-
3	/5	2/3	1/2	0.00069	Ę
1	/2	3/5	1/2	0.020	ea
2	/5	3/5	1/2	0.032	greatly ⊌

J. M. Lattimer


Importance of $\Delta R = R_{2.0} - R_{1.4}$

J. M. Lattimer Correlations and Semi-Universal Relations Connecting Nuclear

Applications

 Analytic method of directly inverting TOV equations. Accuracies can be made arbitrarily high (number of R_f values). Existing techniques use M [M_o] parameterized EOS models in probabilistic (Bayesian) approaches having unquantified systematic uncertainties stemming from the model choice and parameter ranges (prior distributions).

▲冊▶ ▲臣▶ ▲臣▶

• Correlations of $c_{s,\max}$ with M_{\max} and R_{\max} also exist (Ofengeim et al. 2023 found ~ 10% uncertainty), but accuracies are improved using power law-relations with $\geq 2 R_f$ values. Accurate values for specific f values would be useful for interpolating within the $\mathcal{E}_f - P_f$ grid. They could also allow probing the composition of the neutron star interior (phase transitions, etc.).

• Another unique feature of the M - R diagram is the value of $(d^2M/dR^2)_{max}$, which can be used in addition to M_{max} and R_{max} to improve accuracies.

• Correlations of Λ , \overline{I} and BE/M with M_{max} and R_{max} remain to be explored.

イロト イヨト イヨト