2D Micromegas trackers for EIC

université PARIS-SACLAY

S. Polcher Rafael, F. Bossù,
A. Bonenfant, M. Boonekamp, A. Francisco, C. Goblin, C. Libourel, V. Maâch, I. Mandjavidze, M. Vandenbrouck

EIC \& ePIC

https://www.energy.gov/science/articles/electron-ion-collider-achieves critical-decision-1-approval

- Electron ion collider: Future collider in Brookhaven, NY, USA. First beam ~2032.
- ePIC will be the first experiment at EIC, the goal is to study how quarks and gluons behave in, interact with, and form hadronic states
- The detector is built around a 1.7T solenoid. Inside the magnet, in the barrel region cylindrical gaseous trackers are needed with:
\rightarrow Good resolution $\sim 150 \mu \mathrm{~m}$
\rightarrow Low material budget
\rightarrow Reduced number of electronic channels

ePIC detector diagram, E. Aschenauer

Cylindrical Micromegas diagram, F. Bossù̀

Micromegas trackers

- A low field region where crossing particles ionize the gas. The electrons created are guided to the mesh.
- High field region below the mesh for amplification.
- The signal is induced on readout strip or pads at the bottom.

Beam test at MAMI

- In June 2023, beam test on a 880MeV electron beam at MAMI in Mainz.
- We tested prototypes with different variations of readout patterns and resistive patterns.
- Promising results, full resistive layer with 1 mm strips fulfills ePIC's requirements but more testing is needed.

