

First measurement of the interaction between open-charm and light-flavor mesons arXiv:2401.13541

Emma Chizzali, on behalf of the ALICE Collaboration 60th International Winter Meeting on Nuclear Physics, Bormio, Italy 23/01/2024

Heavy-flavor particles and the QGP

- Heavy quarks (HQ) produced in heavy-ion collision
 - Thermal equilibration time expected to be of the order of QGP lifetime
 - Ideal probes of the QGP

Heavy-flavor particles and the QGP

- Heavy quarks (HQ) produced in heavy-ion collision
 - Thermal equilibration time expected to be of the order of QGP lifetime
 - Ideal probes of the QGP
- During hadronic phase, D meson rescattering has to be considered
 - Modifies heavy-ion observables
 - Models depend on the scattering lengths between D meson and light hadrons
 - \rightarrow No experimental constraints

R. Rapp et al., *Phys. Lett. B* **701** (2011) 445-450 R. Rapp et al., *Phys. Lett. B* **735** (2014) 445–450 R. Rapp et al., *Phys. Rev. Lett.* **124** (2020) 042301

Exotic states

- Strong final-state interaction (FSI) can lead to formation of bound or molecular states
- Several new states observed
 - Hidden charm and/or beauty (XYZ states) A. Hosaka et al., PTEP 2016 no. 6 (2016) 062C01 LHCb Collab, JHEP 07 (2019) 035
 - Open charm (T_{cc}) LHCb Collab., *Nat. Phys.* **18** (2022) 751–754
 - Pentaquark states (e.g., P_c(4380), P_c(4450))
 LHCb Collab., Phys. Rev. Lett. 115 (2015) 072001
 LHCb Collab., Phys. Rev. Lett. 122 no. 22, (2019) 222001
- Measurement of the strong FSI needed to determine nature of states

$$C(k^*) = \mathcal{N} \frac{N_{same}(k^*)}{N_{mixed}(k^*)} = \int S(r^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3r^* \xrightarrow{k^* \to \infty} 1$$

experimental definition
s. E. Koonin, *Phys. Lett. B* 70 (1977) 43-47
S. Pratt, *Phys. Rev. C* 42 (1990) 2646-2652
Relative momentum $\vec{k}^* = \frac{1}{2} |\vec{p}_1^* - \vec{p}_2^*|$ and $\vec{p}_1^* + \vec{p}_2^* = 0$
Relative distance $\vec{r}^* = \vec{r}_1^* - \vec{r}_2^*$

ALICE

ALICE

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at vs = 13 TeV
- Excellent PID with ALICE detector
 - Momentum resolution σ(p_T)/p_T ~O(1%) M. Ivanov Nuclear Physics A 904–905 (2013) 162c–169c
 - Primary charged particle (p, K, π) purities up to 99%
 - D and D* mesons reconstructed using machine learning → purities ~70%

ALICE-PHO-SKE-2017-001

ALICE

ALICE

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at Vs = 13 TeV
- Excellent PID with ALICE detector
 - Momentum resolution σ(p_T)/p_T ~O(1%)
 M. Ivanov Nuclear Physics A 904–905 (2013) 162c–169c
 - Primary charged particle (p, K, π) purities up to 99%
 - D and D* mesons reconstructed using machine learning → purities ~70%

Use correlation data to study residual final state interaction among D-K, $D-\pi$, D^*-K , $D^*-\pi$

Approach already successfully applied to study D-p system

Alice Collab. Phys. Rev. D 106 (2022) 052010

ALICE-PHO-SKE-2017-001

Genuine correlation function

- Measurement of D(*)-K and D(*)-π correlation functions for same charge (SC) and opposite charge (OC) configuration
- Sensitive to **Coulomb** and **strong** interaction

Genuine correlation function

- Measurement of D(*)-K and D(*)-π correlation functions for same charge (SC) and opposite charge (OC) configuration
- Sensitive to Coulomb and strong interaction **Comparison to NN system** arXiv:2401.13541 ALICE Collab., Phys. Lett. B 805 (2020) 135419 3.5 $C(k^*)$ ALICE pp $\sqrt{s} = 13 \text{ TeV}$ ALICE pp $\sqrt{s} = 13 \text{ TeV}$ ALICE pp $\sqrt{s} = 13 \text{ TeV}$ 1.2 High-mult. (0–0.17% INEL>0) High-mult. (0–0.17% INEL>0) High-mult. (0–0.17% INEL>0) 3 • $D^+\pi^- \oplus D^-\pi^+$ 2.0⊢ Dπ, **SC** ○ p-p ⊕ p̄-p̄ Dπ, **OC** Coulomb + Argonne v_{18} (fit) 1.0 2.5 $^{8.0}C_{D^+\pi^+}(k^*)$ C^{-μ-μ-(}κ*) 1.05 • $D^+\pi^+ \oplus D^-\pi^-$ C(k*) 0.95 1.5 300 100 200 0.6 k* (MeV/c) 1.0 100 200 200 200 100 50 150 100 Ω 0 Ω *k** (MeV/*c*) *k** (MeV/*c*) k* (MeV/c)

D-light meson scattering lengths

Channel	(S,I)	L. Liu <i>et al.</i>	XY. Guo <i>et al.</i>	ZH. Guo <i>et al.</i>		BL. Huang <i>et al.</i>	J. M. Torres-Rincon <i>et al.</i>
				Fit-1B	Fit-2B		
Dπ	(0,3/2)	-0.10 fm	-0.11 fm	-0.101 fm	-0.099 fm	-0.06 fm	-0.101 fm
	(0,1/2)	0.37 fm	0.33 fm	0.31 fm	0.34 fm	0.61 fm	0.423 fm
DK	(1,1)	0.07+i0.17 fm	-0.05 fm	0.06+i0.30 fm	0.05+i0.17 fm	-0.01 fm	-0.027+i0.083 fm
DK	(-1,0)	0.84 fm	0.46 fm	0.96 fm	0.68 fm	1.81 fm	0.399 fm
	(-1,1)	-0.20 fm	-0.22 fm	-0.18 fm	-0.19 fm	-0.24 fm	-0.233 fm
		L		ŕ		۲ <u>۲</u>	
1) (alway of LTC		atuiku tion fuona	Lattice QCD + chir	Lattice QCD + chiral perturbation theory	Lattice QCD ¹ + Unitarized effective field theory		

¹Values of LECs of NLO contribution from of the Fit-2B to LQCD from Z.-H. Guo et al.

L. Liu et al, Phys. Rev. D87 (2013) 014508 X.-Y. Guo et al, Phys. Rev. D 98 (2018) 014510

Z.-H. Guo et al Eur. Phys. J. C 79 (2019) 13

B.-L. Huang et al, Phys. Rev. D 105 (2022) 036016

J. M. Torres-Rincon et al, *Phys. Rev. D* **108**, 096008

- Very small (~0.1 0.5 fm) scattering parameters compared to other interactions
 - Light-flavor–light-flavor~7-8 fm
 - Light-flavor-strange~1-2 fm

D-light meson scattering lengths

Channel	(S,I)	L. Liu <i>et al.</i>	XY. Guo et al.	ZH. Guo <i>et al.</i>		BL. Huang <i>et al.</i>	J. M. Torres-Rincon et al.
				Fit-1B	Fit-2B		
Dπ	(0,3/2)	-0.10 fm	-0.11 fm	-0.101 fm	-0.099 fm	-0.06 fm	-0.101 fm
	(0,1/2)	0.37 fm	0.33 fm	0.31 fm	0.34 fm	0.61 fm	0.423 fm
DK	(1,1)	0.07+i0.17 fm	-0.05 fm	0.06+i0.30 fm	0.05+i0.17 fm	-0.01 fm	-0.027+i0.083 fm
DK	(-1,0)	0.84 fm	0.46 fm	0.96 fm	0.68 fm	1.81 fm	0.399 fm
	(-1,1)	-0.20 fm	-0.22 fm	-0.18 fm	-0.19 fm	-0.24 fm	-0.233 fm
		ι	Lattice QCD + chi	ral extrapolation		Lattice QCD + chiral	Lattice QCD ¹ + Unitarized
¹ Values of LE of the Fit-2B	Cs of NLO co to LQCD fron	ntribution from n ZH. Guo et al.					enective neid theory
L. Liu et al, Pł XY. Guo et a ZH. Guo et a	nys. Rev. D87 I, Phys. Rev. I al Eur. Phys. J	<mark>(2013) 014508</mark> D 98 (2018) 014510 . C 79 (2019) 13			Go from iso basis using	ospin (theory) to cha g Clebsch-Gordan co	arge (data) pefficients

60th International Winter Meeting on Nuclear Physics | Emma Chizzali

B.-L. Huang et al, Phys. Rev. D 105 (2022) 036016 J. M. Torres-Rincon et al, *Phys. Rev. D* 108, 096008

Dπ and **DK** interaction

- DK
 - Limited by statistics → LHC Run3 data needed
 - Compatible with models

L. Liu et al, Phys. Rev. D87 (2013) 014508 X.-Y. Guo et al, Phys. Rev. D 98 (2018) 014510 Z.-H. Guo et al Eur. Phys. J. C 79 (2019) 13 B.-L. Huang et al, Phys. Rev. D 105 (2022) 036016 J. M. Torres-Rincon et al, *Phys. Rev. D* 108, 096008

Dπ and DK interaction

- DK
 - Limited by statistics \rightarrow LHC Run 3 data needed
 - Compatible with models
- Dπ
 - Coulomb-only interaction favoured
 - Tension with theory models

L. Liu et al, Phys. Rev. D87 (2013) 014508 X.-Y. Guo et al, Phys. Rev. D 98 (2018) 014510 Z.-H. Guo et al Eur. Phys. J. C 79 (2019) 13 B.-L. Huang et al, Phys. Rev. D 105 (2022) 036016 J. M. Torres-Rincon et al, Phys. Rev. D 108, 096008

D*π and D*K interaction sc

- Similar results as for D-K/ π \rightarrow heavy-quark spin symmetry
- D*K
 - Limited by statistics → LHC Run 3 data needed
 - Compatible with model
- D*π
 - Coulomb-only interaction favoured
 - Tension with theory model

J. M. Torres-Rincon et al, Phys. Rev. D 108, 096008

$D\pi$ correlation function fit

arXiv:2401.13541

- $D^+\pi^+$ and $D^+\pi^-$ share I=3/2 channel \rightarrow simultaneous fit
- Vanishing scattering parameters in both isospin channels
- Tension with theory especially in I=1/2 channel

D*π correlation function fit

- Shared I=3/2 channel \rightarrow simultaneous fit
- Vanishing scattering parameters within uncertainties
- Scattering parameters compatible with D π results \rightarrow Heavy-quark spin symmetry

60th International Winter Meeting on Nuclear Physics | Emma Chizzali

arXiv:2401.13541

Nuclear modification factor

 $a_0^{\mathrm{D}\pi}$ (I = -

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}$$

- Heavy-ion observable
- Modified by rescattering and sensitive to energy loss of c quark
- Effect of rescattering might be much smaller, as models employ larger theory values for now

Conclusion

- First measurement of interaction between charm and light-flavor mesons in pp collisions at Vs = 13 TeV arXiv:2401.13541
- Strong interaction found to be shallow
 → Data compatible with Coulomb-only hypothesis
- D(*)-light-flavor meson interactions are similar
 → heavy-quark spin symmetry
- Tension with theory in the case of $D\pi$ and $D*\pi$
- Smaller effect on heavy-ion observables, as rescattering models employ larger theory values for now
- Significant improvement of statistics foreseen with LHC Run 3 data

Additional material

D meson reconstruction

- Decay channel $D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$
 - BR=(9.38±0.16)% PDG, Prog. Theo. Exp. Phys. (2020) 083C01
- Candidates consist of
 - Combinatorial background → random combination of uncorrelated pions and kaons
 - Prompt D → hadronization of the charm quark or strong decay from excited states
 - Non-prompt D (feed-down) → decay products of beauty hadrons
- Purity of D meson candidates ~70%
- Similar purity for D* candidates
 - Decay channel $D^{\pm *} \rightarrow D^0 \pi^{\pm}$ with BR=(67.7±0.5)%

Source

ALICE

- Particle emission from Gaussian core source
 - Universal source model constrained from pp pairs (well known interaction)

ALICE Collab., Physics Letters B, 811 (2020) 135849

Source

- Particle emission from Gaussian core source
 - Universal source model constrained from pp pairs (well known interaction) ALICE Collab., Physics Letters B, 811 (2020) 135849
- Core radius effectively increased by short-lived strongly decaying resonances ($c\tau \approx r_{core}$)
 - Gaussian profile Dp source
 - $r_{eff} = 0.89^{+0.08}_{-0.22} \, fm$
 - DK and Dπ source described by weighted (w¹) sum of two Gaussian sources, to describe tail from longerlived resonances:
 - DK: $r_{eff}^1 = 0.86_{-0.07}^{+0.09} fm$, $r_{eff}^2 = 2.03_{-0.12}^{+0.19} fm$
 - $D\pi$: $r_{eff}^1 = 0.97_{-0.08}^{+0.09} fm$, $r_{eff}^2 = 2.52_{-0.20}^{+0.36} fm$

Dπ and **DK** interaction

ALICE

- Lattice data only available for $D\pi(I=3/2)$ and D^+K^- (I=0,1)
 - Scattering parameters at physical quark masses obtained from chiral extrapolation
- $D\pi(I=1/2)$ and D^+K^+ (I=0,1) rely on predictions from fitting the available lattice data

Correlation function and bound states

- Correlation functions can be used to study the existence of bound states
- Interplay between system size and scattering length can lead to a size-dependent modification of the correlation function in presence of a bound state

$$C(q) = 1 + \frac{1}{x^2 + y^2} \left[\frac{1}{2} - \frac{2y}{\sqrt{\pi}} \int_0^{2x} dt \frac{e^{t^2 - 4x^2}}{x} - \frac{(1 - e^{-4x^2})}{2} \right]$$
$$x = qR \quad y = \frac{R}{a_0}$$

R= source size q= invariant relative momentum a₀= scattering length

Y. Kamiya et al. arXiv:2108.09644v1

Scattering length

Different sign
conventionFigure 2.6: Reduced wave-function u(r) for zero-energy ($k^* \approx 0$) as function of r for a repulsive
potential (a), an attractive potential (b) and increased attractive potential (c). The intercept of the
outside u(r) with the r-axis gives the scattering length a. Figures taken from [113].

Gaussian Potential

$$V(V_0, r) = V_0 e^{-(m_{\rho} r)^2}$$

- Strength adjustable
- Range: mass of the ρ meson

Y. Kamiya et al., EPJA 58 (2022) 7, 131

Charm femtoscopy with ALICE 3

- ALICE 3: a next generation experiment arXiv:2211.02491v1
- Possible to study exotic charm states
- Test formation of DD^* and $\text{D}\bar{\text{D}}^*$ bound states
 - T_{CC}^+ could be D^0D^* molecule
 - $X_{c1}(3872)$ could be a $D\overline{D}^*$ molecule
- Upgrade projection
 - Gaussian potential
 - Different source radii

