

Micromegas detectors for neutron detection and imaging

Thomas Papaevangelou, IRFU, CEA, Université Paris-Saclay

60th international Winter Meeting on Nuclear Physics

Bormio, Italy

22-26 January 2024

OUTLOOK

MICROMEGAS

Micromegas:

- > Invented in 1996 at CEA Saclay by I. Giomataris
- > Micro-Pattern Gaseous Detector for charged particles, designed for physics experiments
- > Advanced characteristics: large-area scalability, high rate capabilities, low cost, large dynamic range
- > Versatility: particle tracking, TPC, imaging

MICROMEGAS

Micro-mesh type → Micromegas family

- "Conventional": a micromesh stretched on a frame is placed on a readout board with the help of spacers ("pillars")
- Bulk Micromegas: Process to encapsulate the mesh on a readout board
- Microbulk: Photolithography & chemical etching of Kapton foils with Cu layers on both sides ("GEM technology").
- Hybrid: Micromesh placed on top of a silicon readout chip (i.e. InGrid, GridPix)
- Piggyback: A resistive bulk Micromegas on top of a dielectric. Decoupled readout
- Micro r-well (µRwell): a resistive Microbulk (DLC layer)

Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, *"Micromegas: A high-granularity position sensitive gaseous detector for high particle-flux environments"*, Nuc. Instrum. Meth. A 376 (1996) 29

Two-region gaseous detector separated by a *Micromesh* :

Neutron detection with Micromegas

Why a Micromegas for neutrons?

Motivation:

Increasing demand for neutron detectors

- ➔ Science
- ➔ Homeland security
- → Industry

Higher performance demanded

³He crisis

Advantages of Micromegas:

- Gaseous detector
 - ✓ Strong n/ γ discrimination
 - ✓ Low material budget possible
 - ✓ Can be "transparent" to neutrons or gammas
 - ✓ Radiation hardness / robustness >10¹⁶ p/cm²
- High performances (gain, energy and time resolution)
- Gain homogeneity (thin amplification gap)
- Low energy threshold
- Large dynamic range of operation
- High granularity
- Fast signals / high rate capabilities > 10⁶/cm²/s
- Reduced ion feedback < 1%</p>
- Simplicity / Low cost / big surface / robust
- Resistive for sparks

Neutron detection with Micromegas

Neutron-to-ion(s) reactions (p, α, fission, spallation ...)

- slow & fast neutrons
 - Solid converter: thin layers deposited on the drift or mesh electrode Usually (¹⁰B, ¹⁰B₄C, ⁶Li, ⁶LiF, U, actinides...)
 - ✓ Simplified implementation
 - ✓ Excellent n/γ discrimination
 - ▲ Limitation on sample thickness from fragment range (strangling)
 ⇒ limited conversion efficiency
 - Not easy to record all fragments
 - > Sample availability & handling may be complicated
 - > Detector gas (³He, BF₃...)
 - ✓ Recording of all fragments
 - \checkmark No fragment strangling \Rightarrow reaction kinematics reconstruction possible
 - $\checkmark\,$ No limitation on the size \Rightarrow high efficiency
 - ✗ Gas availability
 - Handling (highly toxic or radioactive gasses)

n

Drift reaion

Multiplication region

α or ⁷Li

⁰B converter

1-10 mm

~100 μm

Cathode

Mesh

Anode

′**B(n,**α)′Li

 $V_{\rm c}$

V_M

 V_{Δ}

104

10³

10²

10

Neutron detection with Micromegas

Elastic scattering (ion recoils) – *fast neutrons*

- Gas (H, He) or solid (paraffin etc.)
 - ✓ Availability
 - ★ Very low efficiency
 - × Efficiency strongly depends on the applied threshold on the EDEP

Radiative capture reactions (n,γ) – slow neutrons

- ✓ High conversion efficiency (Gd, Cd)
- × Bad n/γ discrimination
- Reduced spatial resolution

Detector to be designed on experiment needs, Micromegas are very adaptable!

- Designed based on neutron energy range expected, backgrounds, etc
- Counting and current modes possible
- Choice of the gas/quenchers important
 - Fast signasl : CF4, ...
 - No hydrogen to limit recoils : CO2
 - Higher gains : ethane, ...
 - Noble gases (recoil in Ar, ...)

Applications of Micromegas neutron detectors NNS Features

Fundamental physics

- \succ Neutron interaction **cross-section** measurements (n,p), (n, α)... and differential cross-sections
 - fission chambers (nTOF...) and TPCs (nTOF) •
- Fission studies
 - TPCs (NIFFTE, FIDIAS...)
- Detector development
 - quenching factor studies for DM experiments (MIMAC TPC)
 - fission tagging in (n, γ) measurements (nTOF)٠

- Thin / low material budget
- ~4 π coverage possible \checkmark
- Simplicity / cost
- Radiation hardness
- Good energy resolution
- Good dE/dx discrimination
- Dynamic range
- High granularity \checkmark

Applications of Micromegas neutron detectors MMs Features

Fundamental physics

- \succ Neutron interaction **cross-section** measurements (n,p), (n, α)... and differential cross-sections
 - fission chambers (nTOF...) and TPCs (nTOF)
- Fission studies
 - TPCs (NIFFTE, FIDIAS...)
- Detector development
 - quenching factor studies for DM experiments (MIMAC TPC)
 - fission tagging in (n, γ) measurements (nTOF)

Neutron beam diagnostics

- Beam flux monitors (nTOF, NFS, ESS)
- Beam profile monitors (nTOF, ESS)

- Thin / low material budget
- ~4 π coverage possible
- Simplicity / cost
- Radiation hardness
- Good energy resolution
- Good dE/dx discrimination
- Dynamic range
- High granularity

~ transparent to neutrons

- Fast signals \rightarrow high rate
- Excellent timing (< ns)
- High granularity

Applications of Micromegas neutron detectors MMs Features

Fundamental physics

- \succ Neutron interaction **cross-section** measurements (n,p), (n, α)... and differential cross-sections
 - fission chambers (nTOF...) and TPCs (nTOF)
- Fission studies
 - TPCs (NIFFTE, FIDIAS...)
- Detector development
 - quenching factor studies for DM experiments (MIMAC TPC)
 - fission tagging in (n, γ) measurements (nTOF)

Neutron beam diagnostics

- Beam flux monitors (nTOF, NFS, ESS)
- Beam profile monitors (nTOF, ESS)

Neutron counters

- Beam Loss Monitors (ESS, Saraf, IPHI)
- > Neutron detection / flux in harsh environments (i.e. nuclear reactors, medical accelerators,...)
- Neutron dosimetry during hadron therapy

- Thin / low material budget
- ~4 π coverage possible
- Simplicity / cost
- Radiation hardness
- Good energy resolution
- Good dE/dx discrimination
- Dynamic range
- High granularity

~ transparent to neutrons

- Fast signals \rightarrow high rate
- Excellent timing (< ns)
- High granularity
- Good n/y discrimination
- High rate capabilities
- Radiation hardness

Applications of Micromegas neutron detectors MMs Features

Fundamental physics

- \blacktriangleright Neutron interaction **cross-section** measurements (n,p), (n, α)... and differential cross-sections
 - fission chambers (nTOF...) and TPCs (nTOF)
- Fission studies
 - TPCs (NIFFTE, FIDIAS...) •
- Detector development
 - quenching factor studies for DM experiments (MIMAC TPC)
 - fission tagging in (n, γ) measurements (nTOF)

Neutron beam diagnostics

- Beam flux monitors (nTOF, NFS, ESS)
- Beam profile monitors (nTOF, ESS)

Neutron counters

- Beam Loss Monitors (ESS, Saraf, IPHI)
- > Neutron detection / flux in harsh environments (i.e. nuclear reactors, medical accelerators,...)
- Neutron dosimetry during hadron therapy

Neutron imaging applications

- Radiography / tomography
- Optical readout → *Real time imaging*

- Thin / low material budget
- ~4 π coverage possible
- Simplicity / cost
- Radiation hardness
- Good energy resolution
- Good dE/dx discrimination
- Dynamic range
- High granularity

~ transparent to neutrons

- Fast signals \rightarrow high rate
- Excellent timing (< ns)
- High granularity
- Good n/y discrimination
- High rate capabilities
- Radiation hardness
- Good n/y discrimination
- High granularity
- Optical readout possible

11

APPLICATIONS

Fission X-section Measurements : nTOF

- Good discrimination between fission fragments and α or γ particles
- Low mass detectors
- $(n,\alpha) / (n,p)$ cross-section measurements also done

Setup for fission at n_TOF

10 Microbulk Micromegas: $\gg \emptyset = 10 \text{ cm}$ $\gg \text{Cu}(5\mu\text{m})/\text{Kap}(50\mu\text{m})/\text{Cu}(5\mu\text{m})$ Windows: $\emptyset = 15 \text{ cm}$, kapton 25 μm Gas: Ar + (10%)CF₄ + (2%) iC₄H₁₀ Samples:

4 ²⁴⁰Pu:

•∅ = 3 cm each •3.5 mg each (27.3 MBq) 4 ²⁴²Pu:

•∅ = 3 cm each •3.0 mg each (1.2 MBq) 1 ²³⁵U: (as ref) •∅ = 3 cm each

•5.0 mg each (0.4 MBq)

cea

Fission tagging: nTOF

The accuracy in the capture cross sections measurement of fissile isotopes is reduced due to the large background contribution from fission reactions

A total absorption calorimeter can be used in order to discriminate capture events using the Q_v

 \star fission y's can have total energy close to Q_v

A heavy ion detector can be used to discriminate fission events. Specifications:

- Low mass
- Insensitive to y's
- High FFs detection efficiency
- Good a to FF discrimination ⇒ Microbulk Micromegas
- Discrimination FF and α •
- Coincidence y and FF to • estimate the background from fission events

3 Microbulks : $\varnothing = 3.5 \text{ cm}$ Cu(5µm)/Kap(25µm)/Cu(5µm) Windows: $\varnothing = 7 \text{ cm}$ \geq kapton 25 µm Gas: \triangleright He + (2%) iC_4H_{10} Samples: 3 ²³⁵Pu: • $\emptyset = 2 \text{ cm each}$ 1 mg each (27.3 MBg) TACFTMG rate as a function of E, , 1 MeV < E < Ehi. mult>1 unts (a.u.)

Neutron energy (eV)

Micromegas as neutron flux monitor: nTOF

Online neutron flux monitor:

- Minimal beam perturbation
- Negligible induced background
 - Massless detectors
- Cover a wide energy range

n_TOF:

- Thin microbullks since 2009 placed in the beam
- Equipped with appropriate convertor deposited on cathode
 - ¹⁰B,⁶Li,²³⁵U
- Low mass & low cost
- The converter is not exposed to the avalanche

NEUTRON FLUX 2010: borated water + demineralized water as coolant & moderator, n_TOF Collaboration, Facility performance report

Setup 2010

Micromegas as neutron beam profiler: nTOF

Neutron cross section measurements need an accurate knowledge of:

- > Shape of the beam profile
 - Beam optics misalignments affect the neutron flux
- Beam intersection factor (BIF)
 - Correction factor when samples are smaller than the beam \varnothing
 - BIF = fraction of the number of neutrons hitting the area covered by the sample compared to the total number of neutrons in beam

At n_TOF (since 2001)

- pixelized readout with 2.5 mm pitch
- > number of pixels = 77×4
- mesh gap = 128 µm
- drift gap = 4 mm
- window = 12.5 m kapton
- ➢ Ar + (10%)CF4 + (2%) iC4H10
- Equipped with B converter (2 µm thick)
- Micromegas + solid sample placed on the drift electrode

1D strips (2001) \rightarrow 2D strips (2009) \rightarrow pixels (2011)

Neutron beam profile from thermal up to ~1 MeV

Experimental (almost real-time) position of the neutron beam

F. Belloni et al. Nucl. Data Sheets 119, 2014

cez

A thin Micromegas 2D structure transparent to neutron beams

- Microbulk production simplification with a real 2D readout structure
 - Better position determination
- Mass minimization
- Large surfaces with high radiopurity possible
- Very good background rejection
- ✓ Successfully used as a neutron beam profiler at GELINA (IRMM), n_TOF (CERN), Orphee reactor (CEA/Saclay).
- ✓ Spatial resolution ~300-400 µm

Neutron beam Anode Strips (Y) Anode Strips (Y) Acad

Anode strips

6x6 cm2

Mesh strips

M. Diakaki et al., NIM A 903 (2018) 46–55, http://dx.doi.org/10.1016/j.nima.2018.06.019

60th international Winter Meeting on Nuclear Physics, Bormio, Italy

Neutron Imaging

- Test of neutron 2D imaging and tomograhy capabilities
- Use for instance to see defects in mechanical pieces
- Use of classical converters for thermal neutron detection
- Use of a CAST-like detector
- Small drift gap and pre-amplification in the drift gap to reconstruct properly the reaction point

Détecteur Moteur Gassiplex 2D image at ORPHEE Tomography at GKKS F. Jeanneau, Proc. SPIE 4785, 214 (2002) 6.736 7.308 0.2419 0.2843 Mµmegas phosphor 106.8 / 94 146 10.171 28.41 ± 1.328 0.2 ± 0.02323 screen 6.717 ± 0.01023 7.325 ± 0.009267 30-0 1659 + 0 007532 X [mm] 160 µm spatial resolution

(sealed mode, electronics...)

60th international Winter Meeting on Nuclear Physics, Bormio, Italy

neutron Beam Loss Monitor: nBLM-ESS

The European Spallation Source:

- The most powerful neutron source, under construction in Sweden
- Protons accelerated to 2 GeV in a linear accelerator (62 mA, 5 MW)
 - → hit on a W target to produce **neutrons**

Proposed solution: nBLM (neutron Beam Loss Monitor)

The problem:

Accidental beam loss In high power linear accelerators:

Damage the accelerator → need for fast alarm Activate materials → monitor small beam loss

- Monitors for high energy part: ionization chambers (charged particles)
- No solution at the low energy part of the accelerator:
- Need to detect fast neutrons with very large dynamic range

strong gamma background from RF cavities!

More info on nBLM:

L. Segui et al 2023 JINST 18 P01013

Adapt a particle detector (*Micromegas*) for beam diagnostics using a combination of neutron convertors and moderators.

→ Detect individual neutrons (counter)

Two complementary modules

Fast response

60th international Winter Meeting on Nuclear Physics, Bormio, Italy

neutron Beam Loss Monitor: nBLM-ESS

60th international Winter Meeting on Nuclear Physics, Bormio, Italy

nBLM as a versatile thermal neutron monitor

Established technology used at ESS (nBLM) Now co-developed by ESS, CEA Saclay, CERN

- Build with low beam attenuation materials (< 2% @ 1.8Å)
- Very high dynamic range
 - Single neutron to over 10⁹ n⋅cm⁻²s⁻¹
 - Dual pulse & current mode operation
- Operation with single or multiple channels
 - Excellent timing resolution (sub-µs)
 - High rate capability O(MHz)
- Vessel adapted as needed
 - Low thickness down to 10 mm
 - In-vacuum monitors
- Interchangeable electrodes for
 - variable efficiency
 - N₂ operation for minimised efficiencies (~10⁻⁷)
- Posibility of 1D/2D segmentation for beam profile monitoring

Slide courtesy of I. Katsioulas (ESS)

nBLM as a versatile thermal neutron monitor

"nBLM MM" in medical accelerators

Characterization of angular and time distributions of photo-neutrons in medical accelerator
 Neutron measurements in presence of strong "gamma flash"
 scintillators become blind

Analysis by Clément Besnard-Vauterin, CEA, DRT, List

A Micromegas with optical readout

Charge readout

Need for specific gasses, i.e. Argon – CF4 mixtures → scintillation light in the visible during a avalanches

Optical vs Charge readout

- Use of camera (high granularity, large number of pixels, use of lens for large field of view)
- Easy handling of the data (light intensity matrix)
- Real-time imaging thanks to very low data processing and light integration approach

Glass Micromegas Produced at MPGD IRFU workshop

Neutron imaging setup

Cathode : ¹⁰B₄C neutron-to-charge converter

Thermal neutrons absorbed by 2 μ m thin ¹⁰B₄C layer

Conversion efficiency: ~5% @ 0.01 eV

(α or Li) fragments cause strong ionisation

Limitation: fragments long range in the gas (5 mm)

Acquisition modes:

Event-by-event: track reconstruction:

Potentially higher resolution and y-to-n suppression

Integrated: real-time radiography:

Almost no data processing

26

Improving the spatial resolution towards 100 µm

Problem: α -particle range ~7 mm

Our approach:

- Reduce drift gap << 1 mm</p>
- Apply strong field for preamplification
 - → Emphasize emition point
 - → Planarity requirements ~ 10 µm / 10 cm!

Spatial resolution measurements @ PSI Raw images

Light intensity profile with single amplification $E_{amp} = 38 \text{ kV/cm}, E_{drift} = 500 \text{ V/cm}, 100 \text{ s}$

Light intensity profile with double amplification $E_{amp} = 20 \text{ kV/cm}, E_{drift} = 24 \text{ kV/cm}, 100 \text{ s}$

Flat cathode (1.5 μ m B₄C), 6x4 cm beam, Gd mask

Deconvolution of the PSF: x-ray tests!

Deconvolution

Cez

Real-time imaging of several objects

Flat cathode (1.5 μ m B₄C), 6x4 cm beam

Light intensity profile with double amplification $E_{amp} = 20 \text{ kV/cm}, E_{drift} = 24 \text{ kV/cm}, 100 \text{ s}$

Raw images¹

60th international Winter Meeting on Nuclear Physics, Bormio, Italy

1200

1600

Conclusions

- o Micromegas are Micropattern Gasseous Detectors for charged particles originally designed for HEP experiments
 - Advantages: low cost for high surface, high granularity, easy operation and robustness, excellent n/gamma discrimination, spatial, large dynamic range,...
 - Suitable also for TPC readout (2D \rightarrow 3D)
- They can be adapted to detect neutrons using appropriate convertors (solid, gas,)
- Very versatile to adapt to applications from basic science
 - Neutron physics (x-section measurements)
 - Neutron beam monitoring: profile & flux monitors
- to applications beyond physics
 - Beam loss monitoring for machine protection
 - Neutron flux measurements in harsh environments
 - Real-time neutron imaging
- Prospects: TPCs with Optical Readout (SPAD chip \rightarrow Arrays of avalanche photodiodes $\sigma_t \sim 0.1$ ns!)

Thank you for your attention!

Spatial resolution measurements @ PSI

B₄C deposition using a mask

3.4 meV Neutron beam – 10 MHz – PSI Zurich – 09/12/2023

Optically read Micromegas: OMNIS/OptiMed-

Electronic readout GEM-based detector

Optical readout Triple-GEM detector

Optical readout Glass Micromegas

ß

Glass Micromegas, Optical readout, deconvolution

Increasing the efficiency: The multilayer concept

- A boron layer thicker than 1-2 µm is not efficient due to the absorption of the reaction products
- Maximum efficiency that can be achieved in this case is of the order of 5% @ 0.025 eV
- Efficiency increase with multilayers, either multi-micromegas or multiconverter
- Efficiency up to ~20%, in agreement with simulations

Involvement in the Work Package of the European **FP7/NMI3** program (2012-2016) From 2016: Science & Innovation with Neutrons in Europe in 2020 \rightarrow **SINE2020**

60th international Winter Meeting on Nuclear Physics, Bormio, Italy

G. Tsiledakis et al., JINST 12, 2017

for

Efficiency

Detection

Neutron

<u>cea</u>

MICROMEGAS CONCEPT

The multiplication takes place in high E field (> 20 kV/cm) between the anode and the mesh

- Thin amplification gap (64-128 $\mu m) \rightarrow$
 - Small imperfections -> no gain variations
- High gain (up to 10⁵ or more)
- Single stage of amplification
 - Fast signals (< 1 ns)
 - Fast ion collection
 - Short recovery time (~150 ns)

 \rightarrow High-rate applications (>MHz)

The virtue of the small gap

Micromegas is a proportional counter!

BULK MICROMEGAS TECHNOLOGY

Pillar distance on photo: 2.5 mm

Source: RD51 Electronics School, February 2014

Standard configuration

- Pillars every 5 (or 10) mm
- Pillar diameter ≈350 µm
- Dead area ≈1.5 (0.4)%
- Amplification gap 128 µm
- Mesh: 325 lines/cm

MICROBULK MICROMEGAS TECHNOLOGY

The pillars are constructed by chemical processing of a copper-kapton-copper foil, on which the mesh and the readout plane are attached

