

M. Mancini^{1,2} on behalf of PADME Collaboration

¹National Laboratories of Frascati – INFN, 00044 Frascati (RM), Italy

² Physics Department, University of Roma "Tor Vergata", 00133 Roma, Italia

marco.mancini@lnf.infn.it

The X_{17} anomaly

Anomaly in the angular correlation of e^+e^- pairs emitted via Internal Pair Creation (ATOMKI anomaly) in ${}^{8}Be$, ${}^{4}He$ and ${}^{12}C$ nuclear transitions [1]. Main properties of the hypothetical new particle:

PADME experiment

The Positron Annihilation into Dark Matter Experiment @LNF searched A'in the $e^+e^- \rightarrow \gamma A'$ process during Run I and II

- e^+ -beam (E < 550 MeV) on $100\mu m$ diamond target
- Dipole B-field bends out un-interacting beam and charged particles
- Electromagnetic Calorimeter (ECal) to measure photons lacksquare
- Small Angle Calorimeter (SAC) Bremm. rejection behind ECal hole
- Charged particle vetoes of plastic scintillator bars

N_*	J^P_*	Scalar X17	Pseudoscalar X17	Vector X17	Axial Vector X17
8 Be(18.15)	1^{+}	×	\checkmark	\checkmark	\checkmark
$^{12}C(17.23)$	1^{-}	\checkmark	×	\checkmark	\checkmark
${}^{4}\text{He}(21.01)$	0^{-}	×	\checkmark	X	\checkmark
${}^{4}\text{He}(20.21)$	0^+	\checkmark	×	\checkmark	×
				^{12}C Last results	

The PADME Run III

Production mechanism

Resonant annihilation: $e^+e^- \rightarrow X_{17}$ and search for visible decays into e^+e^-

 $\boldsymbol{\sigma_{res}}(\sqrt{s}) = \frac{12\pi}{m_{X_{17}}^2} \frac{\Gamma_{X_{17}}^2/4}{\left(\sqrt{s} - m_{X_{17}}\right)^2 + \Gamma_{X_{17}}^2/4}$ @PADME $\sqrt{s} = \sqrt{2m_e E_{beam}}$ and $\sigma_{res}(\sqrt{s})$ increases if $\sqrt{s} = m_{X_{17}}$ \rightarrow invariant mass scan procedure [4,5]

C target 100 µm	2 · 10 ¹¹ poT , δE = 1.4 MeV, 13 runs
$g_{ve} = 2 \cdot 10^{-4}$	4 · 10 ¹¹ poT , δE = 0.7 MeV, 13 runs

Analysis strategy

- Fixed target experiment: *s* and *t* channel kinematics can be distinguished
- $\rightarrow X_{17}$ resonant production has same acceptance of Bhabha s-channel
- \rightarrow Full Bhabha scattering strongly boosted in forward direction
- \rightarrow Set of cuts selecting events in central region where background is comparable to the signal

4011	Bhabha scattering	ļ
	s-channel	

Collected data

Data taking lasted 3 months at the end of 2022

- Acquired luminosity $\sim 6 \times 10^{11}$ PoT:
- 47 points in $260 < E_{beam} < 300$ MeV with ullet $\sigma_E \simeq 0.7 \text{ MeV}$
- 5 points in $205 < E_{beam} < 212 \text{ MeV}$
- 1 point at $E_{beam} = 402 \text{ MeV}$

Run III experimental setup:

Main SM background processes: Bhabha scattering & $\gamma\gamma$ -production \rightarrow Improvements of experimental setup

B-field off to detect final state particles with ECal and **ETagger**

Out-of-resonance points:

- Using kinematic relation between E_{γ} and θ_{γ} \rightarrow very good signal to background separation
- Pure SM measurements \bullet
- Comparisons with data and PADME full MC [6] \bullet

Preliminary results and conclusions

References

The data analysis is in progress

- PADME will set stringent limits on both vector and pseudoscalar hypotheses [5]
- Measurements of cross sections of involved SM processes below 20 MeV will be performed

[1] A. J. Krasznahorkay et al, Phys. Rev. C, 106(6):L061601 (2022) [2] J. Feng et al, Phys. Rev. D, 102(3):L036016 (2020) [3] P. Albicocco et al, JINST, 17(08):P08032(2022) [4] E. Nardi et al, Phys. Rev. D, 97(9):L095004 (2018) [5] Darmè et al., Phys. Rev. D, 106:L115036(2022) [6] F. Bossi et al, JHEP, 09:233 (2022)

Marco Mancini – marco.mancini@lnf.infn.it