60th International Winter Meeting on Nuclear Physics Bormio, 22 - 26 January 2024

Core-collapse supernovae and neutron star mergers

Almudena Arcones

European Research Council Established by the European Commission

TECHNISCHE UNIVERSITÄT DARMSTADT

Cosmic laboratories for nuclear physics

Almudena Arcones

Bormio Conference

2

Extreme conditions

Extreme conditions

Extreme conditions

Almudena Arcones

Observable: heavy elements produced by the r-process

Solar system

Almudena Arcones

Oldest stars

Kilonova

Neutron capture processes

Almudena Arcones

- solar system and kilonova

Oldest stars

Sneden, Cowan, Gallino 2008

Atomic number

r-process in oldest stars and in Solar system same relative abundances:

Robust r-process

R-process from observations

- Solar system: residual r-process r-process peaks and path \rightarrow fast neutron capture
- Astrophysical environment: explosive and high neutron density
- Old stars: robust process from 2nd to 3rd peak contribution from other process(es) below 2nd peak
- Chemical evolution: r-process rare and early

How were the elements from iron to uranium made in the universe?

Several r-processes and several sites

R-process: from simulations to observations

Neutron star mergers Equation of state Neutrinos Long-time simulations Supernovae

Almudena Arcones

R-process: from simulations to observations

Neutron star mergers Equation of state Neutrinos Long-time simulations Supernovae

Almudena Arcones

https://github.com/nuc-astro ApJS (2023)

Bormio Conference

Nuclear

9

Neutron star mergers

Neutron star mergers

Neutron star merger: GW170817

LIGO-LIVINGSTON OBSERVATORY

LIGO-HANFORD OBSERVATORY

Credit: LIGO Hanford

VIRGO AT CASCINA, ITALY

17. August 2017 Virgo-LIGO-collaboration discovered a neutron star merger

Almudena Arcones

Kilonova

Almudena Arcones

12

Dynamical and disk ejecta

Almudena Arcones

Accretion disk ejecta

Martin et al. ApJ (2015), Perego et al. MNRAS (2014)

Almudena Arcones

Bormio Conference

15

Accretion disk ejecta

Martin et al. ApJ (2015), Perego et al. MNRAS (2014)

Almudena Arcones

Bormio Conference

15

Blue kilonova and Strontium (Z=38)

First direct detection of r-process

Very Large Telescope (VLT), Chile

Almudena Arcones

Observable: heavy elements produced by the r-process

Almudena Arcones

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Almudena Arcones

Bormio Conference

Nuclear statistical equilibrium (NSE)

charged particle reactions a-process

r-process weak r-process νp -process

Core-collapse supernova: weak r-process

Neutrino-driven supernovae: elements up to Ag Combine astrophysics and nuclear physics uncertainties Motivation and support for experiments at NSCL, ANL, TRIUMF, ATOMKI

Bliss et al. JPG (2017), Bliss et al. ApJ (2018), Bliss et al. PRC (2020)

Almudena Arcones

r-process in supernovae?

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

First 3D simulations of explosions with magnetic fields and detailed neutrino transport, and their nucleosynthesis Reichert et al. ApJ (2021), Reichert et al. MNRAS (2023)

Open questions

- Long-time evolution:

Reichert et al. (to be submitted)

Magnetar (neutron star) vs. Collapsar (black hole): r-process possible?

• Impact of magnetic field strength and morphology on nucleosynthesis

R-process: from simulations to observations

Neutron star mergers **Equation of state** Neutrinos Long-time simulations Supernovae

Almudena Arcones

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Yasin, Schäfer (now Huth), Arcones, Schwenk, PRL (2020)

Almudena Arcones

22

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Yasin, Schäfer (now Huth), Arcones, Schwenk, PRL (2020)

Almudena Arcones

Effective mass: PNS contraction

22

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Yasin, Schäfer (now Huth), Arcones, Schwenk, PRL (2020)

Almudena Arcones

Effective mass: PNS contraction

22

Equation of state in neutron star mergers

Systematic variations of key properties

10 8 60 K = 220 MeV $K = 175 \, \text{MeV}$ 40 20 y [km] 0 -20 Jacobi et al., MNRAS (2024) -40 --60-40 -20 0 20 40 60 -50 -25 <u>–</u>60

Impact on: dynamics, gravitational waves, mass ejected (Jacobi et al., MNRAS 2024) nucleosynthesis and kilonova (Ricigliano et al., in prep.)

Almudena Arcones

Nuclear physics input

nuclear masses, beta decay, reaction rates (neutron capture), fission

Neutron number, N

Almudena Arcones

Erler et al. (2012)

Nuclear masses

Abundances based on density functional theory - six sets of different parametrisation (Erler et al., Nature 2012) - two realistic astrophysical scenarios: MR-SN + NSM

First systematic uncertainty band for r-process abundances

Uncertainty band depends on mass number, in contrast to homogeneous band for all mass numbers

Can we link masses to r-process abundances?

Martin, Arcones, Nazarewicz, Olsen, PRL (2016)

Two neutron separation energy

Martin, Arcones, Nazarewicz, Olsen, PRL (2016)

Two neutron separation energy

Almudena Arcones

Martin, Arcones, Nazarewicz, Olsen, PRL (2016)

Two neutron separation energy -> abundances

Almudena Arcones

transition from deformed to spherical

> Neutron captures are critical during decay to stability!

Fission: barriers and yield distributions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures

Almudena Arcones

Eichler et al. ApJ (2015), Eichler et al. ApJ (2019)

Nucleosynthesis: connecting simulations to observations

Almudena Arcones

Exciting time

Almudena Arcones

- Multimessenger astronomy: electromagnetic + gravitational waves + neutrinos
- Advanced astrophysical simulations + detailed **physics** (supercomputers)
- New experimental frontier: extreme-neutron rich nuclei at FAIR, FRIB, RIKEN, ISOLDE, TRIUMF,...
- Increased number observations of **oldest stars**: large telescopes and new spectrographs

Mergers and supernovae as cosmic laboratories establish the origin and history of heavy elements in the universe

European Research Council Established by the European Commission

