New Experimental Techniques for Dark Sectors

Semi-visible Jets and Emerging Jets with Partial Event Building (CERN Summer School Project)

Angelica Aira Ayalin University of the Philippines Diliman

Supervisors: Sukanya Sinha (University of Manchester) & Christopher Young (CERN)

The Dark Sector: Semi-visible Jets (SVJ) and Emerging Jets (EJ)

What if there's not 1 DM particle but a whole sector of invisible particles that interact with each other?

If we produce a dark sector quark it will fragment and hadronize into dark sector hadrons which will then decay giving <u>unusual topologies</u> in our detector.

Different parameters, different jet phenomenologies. For example:

Semi-visible Jets (SVJ): produced when dark quarks decay partly to SM quarks and partly to stable dark hadrons (which are invisible) \rightarrow <u>missing transverse energy</u>

Emerging Jets (EJ): dark hadrons undergoing displaced decays \rightarrow <u>displaced objects</u>

challenging event signature

displaced vertex: charged tracks originating from a displaced point r_inv: rate of stable dark hadrons / total dark hadrons

Properties of the SVJ signal

Plotting the **lead jet pT** and the **MET** in the event:

met

Triggers

How do we choose interesting events that we want to keep and study? We use triggers!

- Collisions in the LHC happen every 25 ns \rightarrow 40 MHz rate of collisions \rightarrow impossible to read-out or record data at that rate in ATLAS
- Trigger selects which events we want to keep for analysis → based on having <u>high transverse momentum objects</u> (e.g. jets, electrons, muons, etc.)
- Rate of data recorded needs to be <u>shared</u> between the different physics objects
- We record <u>all</u> events with high pT jets and also events with high MET
- But our signals have both of these properties <u>which trigger is best</u> to record the most data?
- **Provide a contract of a con**

Semi-visible jets - trigger choice What are the current triggers in ATLAS?

- ATLAS records all events satisfying any of:
 - \circ **J420 trigger** \rightarrow r=0.4 (small-R) jet w/ offline pT>450 GeV
 - \circ **Icw_j460 trigger** \rightarrow r=1.0 (large-R) jet w/ offline pT>500 GeV
 - **MET trigger** \rightarrow offline MET>200 GeV
- All 3 triggers:
 - ✓ record highest HT energy events
 - X miss low HT signal
- Find highest efficiency by computing integrals of the plots

HT: scalar jet pt sum, hadronic transverse energy incl: inclusive with 2-jet pre-selection, no triggers applied yet

Partial Event Building

Triggers can only do so much... so how can we save more events?

We record only ~1-2 kHz of full ATLAS events ⇒ split between trigger signatures

💾 💾 Possibility of recording more events if we record only PART of the detector and trigger information!

Partial Event Building principle

Find efficient triggers ⇒ more signal events than existing triggers

Record enough information to distinguish them from background

Emerging jets appear displaced in the detector ⇔ Recording these 👬 special 🧦 jets ⇔ Separate new physics from SM jets

Study what triggers for dark sector signals + retain enough information to distinguish against QCD

Feasibility Check of Partial Event Building

PEB for the dark sector is brand new... feasibility check first!

- $\frac{9}{2}$ Record information in region(s) around leading jet(s) with Partial Event Building \rightarrow check that these contain "special" jets
- Charged fraction (chf) fraction of pT of the lead jet carried by primary vertex (PV) tracks (trk)
- Plot leading jet charged fraction

Next step for the project: Emulate whole PEB selection

New Trigger Choice for SVJ

- New triggers tried:
 - **allHT trigger** \rightarrow scalar jet pt sum>1000 GeV
 - allHT650 trigger → scalar jet pt sum>650 GeV
- allHT650 trigger:
 - records highest HT energy events for SVJ

SVJ Signal 1: r_inv = 0.4, mediator mass = 2000 GeV

New Trigger Efficiencies for SVJ Signals

With allHT and allHT650

Semi-visible Jet Signals				
event/signal	515618	515624	515631	
mediator mass	2000	2500	3000	
r_inv	4	4	6	
efficiency_J420	84.73%	62.56%	44.22%	
efficiency_MET	70.86%	56.12%	49.85%	
efficiency_lcw_j460	83.03%	61.04%	42.01%	
efficiency_allHT	84.14%	61.56%	40.65%	
efficiency_allHT650	88.64%	67.89%	48.03%	
Comparison vs allHT650				
allHT650 and J420	4.42%	7.86%	7.93%	
allHT650 and allHT	6.33%	10.09%	12.55%	

event/signal	801928
dark confinement scale (Λ_dark)	1.6
Z prime mass [GeV]	1500
Dark pion mass [GeV]	0.8
Dark rho mass [GeV]	3.2
Lifetime [mm]	10
leadjet_2bins	44%
2ndjet_2bins	42%
3rdjet_2bins	20%
4thjet_2bins	3%
5thjet_2bins	0%

Charged fraction of first 5 jets for EJ signal 2 (Z' mass = 1500 GeV, lifetime = 10 mm)

Conclusion

- Semi-visible jet signals \rightarrow high jet pT and high MET
- Emerging jet signals \rightarrow no tracks reconstructed from PV, particles produced are displaced from hard scatter
- Triggering on SVJ: large-R triggers perform well, allHT650 performs best
 - Partial Event Building: promising way of increasing signal that we can record

- For PEB, 3rd jet has to be included to determine special nature of EJ signals
- Thanks to ATLAS, CERN, and CERN & Society!

Trigger Efficiencies for SVJ Signals

How much is each trigger capturing?

	small		
event/signal	515618	515624	515631
mediator mass	2000	2500	3000
r_inv	4	4	6
efficiency_J420	84.73%	62.56%	44.22%
efficiency_MET	70.86%	56.12%	49.85%
	large		
efficiency_lcw_j460	91.00%	79.00%	66.50%

- Current ATLAS analysis: uses <u>MET trigger</u> (met > 200 GeV) (simplest to use)
- But we see that slightly more signal events are recorded by the <u>large-R trigger (r=1.0)</u>
- For Run 3 analysis, we can revisit this strategy to recover some signal efficiency!
- I have also studied the efficiencies for emerging jet signals (internal)

What is Dark Matter? Why have we not found it yet?

... but what if we should look at unusual final states? 14

SVJ Signal 1: r_inv = 0.4, mediator mass = 2000 GeV

event/signal	801928
dark confinement scale (Λ_dark)	1.6
Z prime mass [GeV]	1500
Dark pion mass [GeV]	0.8
Dark rho mass [GeV]	3.2
Lifetime [mm]	10
leadjet_2bins	44%
2ndjet_2bins	42%
3rdjet_2bins	20%
4thjet_2bins	3%
5thjet_2bins	0%

Charged fraction of first 5 jets for EJ signal 2 (Z' mass = 1500 GeV, lifetime = 10 mm)