### Set-Up for Semi-Visible Jets with Leptons



Clarisse Prat University of the Witwatersrand, Johannesburg Supervisor: Prof Deepak Kar





## First things first

- Big thank you to Nishita Desai for the implementation of the model • Leptons lurking in SVJs at the LHC
  - Cesare Cazzaniga and Annapaola de Cosa • <u>arXiv:2206.03909</u>
- Can we make a simpler model?





## Our Set-Up

R\_inv

π°

π

π

πЪ

R\_inv

### neutral dark pions

## Our Model



πЪ

π

π°

### neutral dark pions

### charged dark pion + strange quark

## Our Model



R\_inv

πЪ

π

π

### neutral dark pions

### charged dark pion + strange quark

## Our Model



### DP and stable dark pion

R\_inv

π

πЪ

πЪ

### neutral dark pions

### charged dark pion + strange quark

## Our Model



### DP and stable dark pion

# Pythia HV Runcard

| <pre># id:all = name antiName spinType 4900555:all = dhstable dhstable 0 4900556:all = dphoton dphoton 0 0</pre>                            | chargeType<br>0 0 5.0<br>0 1.0 0.                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 4900111:m0 = 20.0 !<br>4900113:m0 = 20.0 !<br>4900211:m0 = 9.99 !<br>4900213:m0 = 9.99 !<br>4900211:mayDecay = on<br>4900213:mayDecay = off | Dark Diagon<br>Dark Diagon<br>Dark Off-Di<br>Dark Off-Di |
| 4900555:mayDecay = off<br>4900556:mayDecay = on<br>4900111:mayDecay = on                                                                    |                                                          |
| <pre>#This is for Rinv 0.7, for other v 4900111:onechannel = 1 1.0 91 -3 4900111:addchannel = 1 0.0 0 490</pre>                             | /alues, simp<br>3 3<br>00211 –49002                      |
| 4900211:onechannel = 1 1.0 100 490<br>4900556:onechannel = 1 1.0 100 11                                                                     | 00555 490055<br>-11                                      |

colType m0 mWidth mMin mMax tau0 0.5 6.0 8.0 0 # Dark sector stable 1 1.2 2.0 0 # Dark photon

al Pion Mass al Rho Mass agonal Pion Mass agonal Rho Mass

oly change following the formula on the right # 1 + to\_st(1.0-inv) + 91 -3 3 # 1 + to\_st(inv) + 0 4900211 -4900211

6 # Dark photon + stable



### Electron multiplicity

- Peaks at around 3 or 4 electrons for the middle R\_inv values
- Fewer DPs are produced for lower R\_inv

Large-radius jet multiplicity

 Peaks at 2 for all values of R\_inv, as expected



Number of electrons in the leading large-radius jet Yield Rinvoo' Rinvo3 Normalised  $10^{-3}$ Rinvo5 Rinvo7 Rinv10  $10^{-4}$  $10^{-5}$  $10^{-6}$ 12 10 14 0 2 8 6 4 Number of electrons

Number of electrons in the LRJs
Peaks at 3 or 4 for for the higher R\_inv values



| 00    |   |  |
|-------|---|--|
| 103   | - |  |
| 705   | 1 |  |
| 707   | = |  |
| /10   | - |  |
|       |   |  |
|       |   |  |
|       |   |  |
|       |   |  |
| 14    |   |  |
| trons |   |  |



### Delta Phi between the two leading large-radius jets

 LRJs are clearly produced back-to-back, as expected

Delta Phi between MET and leading LRJ

- MET is somewhat aligned with the leading LRJ
- "Steep" fall-off at around 1.5 rad



### What next?

• What's the actual signature we can study?

• What's the simplest model we can make?