

Uncovering Tau-Leptons Enriched Semi-Visible Jets at the LHC

r Eur. Phys. J. C 83, 599 (2023)

Tobias Fitschen on behalf of the authors:

- D Hugues Beauchesne, D Cesare Cazzaniga, D Annapaola de Cosa,
- 🕩 Tobias Fitschen, 🕩 Caterina Doglioni, ២ Giovanni Grilli di Cortona,
- Diyuan Zhou

19 October 2023

Contact: tobias.fitschen@cern.ch University of Manchester

Hidden Dark Sectors

Motivation:

- Previous DM searches: single particle candidates (e.g. WIMPS)
- But a large fraction of visible matter is composite (hadrons)
 - $\rightarrow\,$ DM may consist of QCD-like hadrons too!

The hidden valley model:

- New force $SU'(N_c^{dark})$ carried by "dark gluons" at scale Λ_{dark}
- Z' acts as portal between SM and new dark sector
 - $ightarrow N_{\it f}^{\it dark}$ "dark quarks" χ_i charged under $SU'(N_c^{\it dark})$
 - \rightarrow DM candidates: Stable dark hadrons

2/12

Hidden Dark Sectors \rightarrow Semi-Visible Jets

Semi-Visible Jets (SVJ)

- Dark QCD hadronises
- Can convert back into SM quarks via Z'
 - \rightarrow Shower partly SM (visible), partly DM (invisible)

 $r_{\rm inv} = \langle {{\rm number \ of \ stable \ hadrons}\over {\rm number \ of \ hadrons}}
angle$

Experimental signature:

- $\not\!\!\! E_T \sim aligned$ with jets
- Unusual jet substructure due to second hadronisation

SVJ shower with second hadronisation

MANCHESTER 1824

Dark Sector Candidates, Anomalies, and Search Techniques

SVJ: An Emerging Field of Study

SVJ is an exciting new signature

• Hidden valleys @ PYTHIA module made modeling of signal possible

MANCHESTER

The University of Manchester

- Cohen et. al. (@arxiv:1707.05326) proposed LHC search strategy
- @ First SVJ workshop in July 2022 kicked off many new studies

Our Signal Model: Tau-Enriched Semi-Visible Jets

MANCHESTER 1824

Z' coupling to SM q and ℓ :

 $\begin{aligned} \mathcal{L}_{\mathsf{SM}} \supset &- Z'_{\mu} \bar{u}_{i} \gamma^{\mu} (g^{u_{R}}_{ij} P_{R} + g^{u_{L}}_{ij} P_{L}) u_{j} \\ &- Z'_{\mu} \bar{d}_{i} \gamma^{\mu} (g^{d_{R}}_{ij} P_{R} + g^{d_{L}}_{ij} P_{L}) d_{j} \\ &- Z'_{\mu} \bar{e}_{i} \gamma^{\mu} (g^{e_{R}}_{ij} P_{R} + g^{e_{L}}_{ij} P_{L}) e_{j} \end{aligned}$

Z' coupling to dark q_{v} : $\mathcal{L}_{q_{v}} \supset -Z'_{\mu} \bar{q}_{vi} \gamma^{\mu} (g_{ij}^{q_{vR}} P_{R} + g_{ij}^{q_{vL}} P_{L}) q$

 \Rightarrow Dark mesons decaying into SM:

$$\Gamma_{\pi_{a} \to f_{i}\bar{f}_{i}} = \frac{N_{c}F_{\pi}^{2}}{32\pi} (\Delta_{ii}^{f} \Delta_{a}^{q_{v}})^{2} \frac{m_{\pi^{a}}m_{f_{i}}^{2}}{M_{Z'}^{4}} \sqrt{1 - \frac{4m_{f_{i}}^{2}}{m_{\pi_{a}}^{2}}}$$

- $Z' \leftrightarrow e, \mu$ coupling suppressed
 - $\rightarrow\,$ Avoids existing constraints from di-lepton searches
 - $\rightarrow\,$ Leaves possibility of τ in jets

Model based on:

• "An effective Z'"

♂ Phys. Rev. D 84, 115006 (2011)

• "Quark flavor transitions in $L_{\mu} - L_{\tau}$ models" \square Phys. Rev. D 89, 095033 (2014)

Event generation

- Madgraph5: Matrix element + cross-section
- Pythia8 (Hidden Valley Module): Parton shower, hadronisation
- DELPHES3 + FASTJET: Jet clustering, fast detector simulation

Event selection

- Based on CMS hadronic SVJ search @ JHEP 06 156 (2022)
- Number of good jets: $N(j^{AK8}) \ge 2$ $p_{T}(j_{1,2}^{AK8}) > 200 \text{ GeV and } |\eta(j_{1,2}^{AK8})| < 2.4$
- Jet separation: $\Delta\eta(j_1^{
 m AK8},j_2^{
 m AK8}) < 1.5$
- Veto on mini-isolated leptons: $N_{\mu,e} = 0$

Trigger Strategy

Hadronic triggers

- Based on CMS hadronic SVI search (♂JHEP 06 156 (2022))
- $H_{\rm T}$ or $p_{\rm T}$ trigger emulated by $M_{\rm T}$ cut
- Lowest possible (unprescaled) triggers:
 - $H_{\rm T} \sim 900 1000 \, {\rm GeV}$
 - $p_{\rm T} \sim 450 500 \, {\rm GeV}$
 - $\rightarrow M_{\rm T} \sim 1.2 {
 m TeV}$ cut

Limitations

- Low acceptance for signals with $m_{Z'} < 1.5 \,\,{\rm TeV}$
- More effective triggers possible?

MANCHESTER

The University of Mancheste

- \mathcal{E}_{T} triggers require extremely low thresholds
- Single τ triggers limited by isolation
- $\text{Di-}\tau$ triggers avoid isolation criterion but have overall low acceptance

Single- τ trigger isolation requirement

Topological triggers

- Make use event geometry
- Jets close to each other $(\Delta \eta)$
- Combined with standard

$H_{\rm T}$ or $p_{\rm T}$ triggers

 $\rightarrow\,$ Much lower bkg acceptance while retaining most signal

Trigger Level Analysis (TLA)

- Save only relevant objects, as reconstructed by HLT
- Much smaller events \rightarrow allows for higher rates
- Successfully used e.g. in @general dijet-searches

Partial Event Building (PEB)

- Fully reconstruct only relevant parts (around jets)
- Retains full jet substructure for tagging
- Used e.g. in $\[\ensuremath{\mathcal{B}} \mu \]$ PEB triggers
- \rightarrow All of these can be combined!

BDT used as final discriminant

- Variables exploiting e/μ enriched jets from τ decays
- Inter-isolation *l*_{inter} highest performing input
 - Captures nearby non-isolated leptons in jets

Ranking of inputs

Rank	Variable	Separation
1	$I_{inter}(\mu)$	2.703×10^{-1} \odot
2	$R_{Norm}(\mu)$	2.601×10^{-1}
3	$I_{\gamma\pi}(\mu)$	2.164×10^{-1}
4	R _{Norm} (e)	$1.786 imes 10^{-1}$
5	l _{inter} (e)	$1.632 imes 10^{-1}$
6	Energyfraction(e)	7.500 × 10 ⁻²
7	$I_{\gamma\pi}(e)$	7.175 × 10 ⁻²
8	$p_{T,Norm}(\mu)$	$6.272 imes 10^{-2}$
9	Energyfraction(μ)	$6.220 imes 10^{-2}$

Area under ROC curve

ightarrow Best acceptance for high BR $_{ au}$ and $m_{Z'}$

- Alternative trigger strategies allow to reach lower $M_{Z'}$
- Focus on au (suppressed $Z' \leftrightarrow e/\mu$ coupling) avoids dilepton limits
- Proposed BDT achieves limits below any previous constraints over large range of $m_{Z'}$

Summary and Outlook

Tau-leptons enriched semi-visible jets (SVJ τ)

- Hidden valley: QCD-like dark sector connected to SM via Z' portal
- Dark hadrons candidate for composite dark matter
- Z^\prime decays to SM quarks and τ
 - ightarrow Jets with large \mathscr{E}_{T} and non-isolated au

Prospects for LHC

- Efficient trigger strategy combines topo-triggers with TLA & PEB
 - $\rightarrow\,$ Hadronic SVJ searches only first step towards a rich SVJ programme

See *G* Cesare Cazzaniga's talk for SVJℓ signature

Appendix

Multivariate Analysis: BDT

S/B separation

Highest performing variables

Results: Prospective Limits

Trigger Level Analysis (TLA)

Example:

One Run 3 fill in August 2022 ${\rm at}~\langle \mu \rangle = 48$

 $\mathsf{Rate}\,\times\,\mathsf{event}\,\,\mathsf{size}\,\rightarrow\,\mathsf{bandwidth}$

 $\begin{array}{c} \mbox{Physics main} \\ \sim 1 \mbox{ kHz} \, \times \, 1.5 \mbox{ MB} \rightarrow 1.5 \mbox{ GB/s} \end{array}$

 $\label{eq:tlass} \begin{array}{c} \textbf{TLA} \\ \sim 4 \ \text{kHz} \, \times \, 5 \ \text{kB} \rightarrow 20 \ \text{MB/s} \end{array}$

 \rightarrow TLA bandwidth so small, it's not even visible on this plot!

TLA stream has highest rate ...

Gap: Emittance scan, no physics data recorded

TLA vs Prescaling

- Offline jets have to rely on heavily prescaled triggers at low p_T
- Un-prescaling recovers spectrum's shape but not statistics
- TLA circumvents HLT limitations

TLA in Action

Example: Leptophobic axial mediator in simple DM models

- Variety of techniques needed to span full $m_{Z'} \rightarrow \,$ dijet mass space
- Early Run 2 TLA (♂ PRL:121.081801) leading in 400 1200 GeV range