THE EXPLORATION OF BOTTOM-QUARK-PHILIC SEMI-VISIBLE JETS

YOUNGST@RS- COLOURS IN DARKNESS: TOWARDS IMPROVED MODELLING OF STRONGLY INTERACTING DARK-SECTORS SHOWERS

Wandile Nzuza University of Witwatersrand, South Africa With Sukanya Sinha and Deepak Kar

MOTIVATION FOR BOTTOM-QUARK-PHILIC SVJS

- <u>WITS ATLAS</u> group presented the first search for non-resonant production of SVJs excluding bi-fundamental mediator mass up to 2.7 TeV.
- There is a significant contribution of ttbar, which sparked interest in SVJ scenario with b-jets.
- The signal generation for our SVJ-b signature makes use of the same setting from the ATLAS paper with different mass values.

MOTIVATION FOR BOTTOM-QUARK-PHILIC SVJS

Searching for SVJ with bottom quarks has never been done before.

By requiring the jets to be b-tagged, it also gives us more discriminatory.

 It will also assist in reducing the leading multijet background.

CURRENT CONSTRAINTS ON SIGNATURE

There are two current searches that probe a similar final state

1. Search for supersymmetry in final states with missing transverse momentum and three or more b-jets in 139 fb⁻¹ of proton-proton collision at $\sqrt{s} = 13$ TeV with the ATLAS detector

2. Search for dark matter production in association with association with Standard Model Higgs Boson decaying b-quarks using the full Run 2 dataset from the ATLAS detectors

CURRENT CONSTRAINTS ON SIGNATURE

1. Search for supersymmetry in final states with missing transverse momentum and three or more b-jets in 139 fb⁻¹ of proton-proton collision at $\sqrt{s} = 13$ TeV with the ATLAS detector.

- Here the validation of our Rivet analysis was perf and yields in specific signal regions (SRs).
- No SVJ-b signal events passed any of the SR sele signal.

	Benchmark	signal	Data	SVJ-b signal
Selection	ATLAS yield	our yield	yield	yield
SR-B	10.13	7	7	0
SR-M	28.30	18	18	0
SR-C	34.71	32	32	0

Benchmark signal model =
$$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$$

• Here the validation of our Rivet analysis was performed both by comparing distributions after 0-lepton preselection

• No SVJ-b signal events passed any of the SR selections, indicating that this search has no sensitivity to SVJ-b

CURRENT CONSTRAINTS ON SIGNATURE

2. Search for dark matter production in association with association with Standard Model Higgs Boson decaying b-quarks using the full Run 2 dataset from the ATLAS detectors

- 3-bjet SRs.
- signal, which is not excluded.
- So it is safe to say the SVJ-b signal is not excluded based on this search.

3 b-tagged SR								
	Benchmark	signal	Data	SVJ-b signal				
Selection	ATLAS yield	our yield	yield	yield				
$150 \le E_{\rm T}^{\rm miss} < 200 {\rm GeV}$	5.3	9	408	0.5				
$200 \le E_{\mathrm{T}}^{\mathrm{miss}} < 350 \mathrm{GeV}$	18	7	658	1.8				
$350 \le E_{\mathrm{T}}^{\mathrm{miss}} < 500 \mathrm{~GeV}$	2.9	0.5	42	0.2				

2 b-tagged SR								
	Benchmark signal		Data	SVJ-b signal				
Selection	ATLAS yield	our yield	yield	yield				
$150 \le E_{\rm T}^{\rm miss} < 200 { m GeV}$	60	110	14259	39				
$200 \le E_{\mathrm{T}}^{\mathrm{miss}} < 350 \mathrm{GeV}$	70	100	13724	59				
$350 \le E_{\mathrm{T}}^{\mathrm{miss}} < 500 \mathrm{~GeV}$	3.6	6	799	0.28				

★ Benchmark point with (m_a, m_A) = 300, 150 GeV

• The yields for this benchmark signal from our Rivet analysis was compared to yields reported by ATLAS for 2-bjet and

• The data yields and the yields from SVJ-b signal, the latter being much smaller than both the data and the benchmark

JET CLUSTERING ALGORITHM: VARIABLE-R JETS

- Initially, we made use of anti- k_t algorithm with fixed radius of R = 0.4
- Investigated which jet clustering algorithm would better reconstruct the signal.
- Implemented variable-R jet algorithm:
 - Makes use of dimensional input parameter (ρ) we sensitivity.

n with fixed radius of R = 0.4 nm would better reconstruct the signal.

Makes use of dimensional input parameter (ho) which can be scanned to optimise the maximum desired

CONCLUSION & FUTURE STEPS

- The work presented thus far is an initial feasibility study into the SVJ-b signature.
- The current bounds on a similar final state don't exclude our signal, making it a promising search channel.
- Currently, we're finalising our pheno paper with a search strategy utilising variable-R jets.

BACK-UP SLIDES

Having a lepton veto would seem appropriate for the analysis but this is not the case.

- A complete lepton veto results in a lose of events.
- Semi-leptonic decays from b-quarks indicate events will have leptons.