

The University of Manchester

HEPData for the ATLAS Dark Jet Resonance Search

Danielle Wilson-Edwards

On behalf of the analysis team: Marcella Bona, Joe Davies, Caterina Doglioni, Alison Elliot, Marie-Hélène Genest, Nikolina Ilić, Nathan Lalloué, Dilia María Portillo-Quintero, Jia Jian Teoh

Dark Jet Resonance Search Analysis Strategy:

See Dilia's talk for more information!

- Reconstructed Objects: Two Large radius jets (Trimmed LCTopo jets)
- Trigger on Large-R jets
- Preselection cuts: $|\eta(j_{1,2})| < 2.0$ $p_{\mathrm{T}}(j_1) > 500 \text{ GeV}$, $p_{\mathrm{T}}(j_2) > 400 \text{ GeV}$ $m(j_{1,2}) > 50 \text{ GeV}$ $m_{\mathrm{JJ}} > 1.3 \text{ TeV}$

ATLAS HEPData Recommendations: Statistically Limited Searches

• Preservation of analysis logic:

• cutflow table for each signal region, for several reproducible or well-defined signal samples

• Preservation of numerical values:

- o central values for the search regions in each bin
- Systematic uncertainties/correlations:
 - A simple stat/syst breakdown is sufficient if the analysis is dominated by statistical uncertainties
- SM background predictions
- Limits
 - Exclusion limits + necessary information for a theorist to emulate the analysis

Di-jet invariant mass distribution

- Data, signal, background counts for mjj in preselection
- Signal mjj shape before signal region cuts for reinterpretation validation
- Normalisation:
 - simulated background is normalised to the data
 - signals are normalised to a production cross-section of 10 fb.

 $\begin{array}{c} \textbf{preselection} \\ m_{\rm JJ} > 1.3 \ {\rm TeV} \\ m(j_{1,2}) > 50 \ {\rm GeV} \quad |\eta(j_{1,2})| < 2.0 \\ p_{\rm T}(j_1) > 500 \ {\rm GeV} \ , p_{\rm T}(j_2) > 400 \ {\rm GeV} \end{array}$

Distributions of the number of tracks associated with the two leading jets

 $\begin{array}{l} \mbox{preselection} \\ m_{\rm JJ} > 1.3 \ {\rm TeV} \\ m(j_{1,2}) > 50 \ {\rm GeV} \quad |\eta(j_{1,2})| < 2.0 \\ p_{\rm T}(j_1) > 500 \ {\rm GeV} \ , p_{\rm T}(j_2) > 400 \ {\rm GeV} \end{array}$

120

140

160

180

200

Data

Background MC

- The number of tracks matched to the untrimmed jets via ghost association
- Uncertainty band around background : modelling uncertainty

Model Independent Limits

- Bump hunter test performed to find localised excess in model-independent manner
- Algorithm scans the distributions using a sliding window of variable width between two bins and half the total number of bins.
- Highest excess: between 1500 < mjj < 1700 GeV, with a global p-value of 0.63
- Data / background yield for mjj in the SR • + statisitical error on data

Signal Region (SR) $n_{\text{track},1}^{\epsilon} > 0 \text{ and } n_{\text{track},2}^{\epsilon} > 0$

Model Dependent Limits

- Expect limits
- Observed limits
- $\pm 1\sigma$ and $\pm 2\sigma$ uncertainty ranges
- Look into storing likelihoods as **pyhf** objects
- Theory predictions typically not provided for HEPData

Signal Region (SR)

Cutflow Table : Relative Signal Efficiencies

Selection / Model	Α	В	C	D
$m_{\rm JJ} > 1.3 { m ~TeV}$	92.9	94.8	80.9	91.8
Jet trigger	93.0	93.2	92.5	92.3
$m_{\rm J_{1,2}}$ > 50 GeV, $p_{\rm T,J_1}$ > 500 GeV, $p_{\rm T,J_2}$ > 400 GeV	88.5	60.0	81.3	56.1
$ \eta_{{ m J}_{1,2}} < 2$	99.9	99.9	100	100
$m_{\rm J_{1,2}}$ < 600 GeV, $p_{\rm T,J_{1,2}}$ < 3000 GeV	99.8	99.7	99.9	99.8
Signal Region $(n_{\text{track},1}^{\epsilon} > 0 \text{ and } n_{\text{track},2}^{\epsilon} > 0)$	37.0	2.7	11.6	55.5

Table 3: Relative efficiency (in %) of each analysis selection with respect to the previous one for models A through D and $m'_{Z} = 2.5$ TeV. Approximately 90000 events were generated per signal.

Discussion Points

- 4 benchmark models considered: by no means an exhaustive selection of dark QCD scenarios!
 - First time interpreting ATLAS data in terms of promptly-decaying dark QCD resonances

• We would love to maximize the re-interpretability of our results.

Backup

Analysis workflow

Decorrelation with ntrke

1. In bins of mij, evaluate the cut value on **ntrk** that corresponds to a given target background efficiency (ϵ =1%)

order to get a smooth distribution of expected ntrk percentiles $\longrightarrow P^{\epsilon}$ **3.** Define ntrkε:

 $n_{\text{trk}}^{\epsilon}(m_{\text{JJ}}) = n_{\text{trk}} - P^{\epsilon}(m_{\text{JJ}})$

Percentiles are defined from full MC *, since ...

- Defining from full data => unblinding the SR
- Defining from data CR would change the shape of the mjj distribution

* ntrk data monte carlo differences are covered with systematics (more info backup slides)

Target Model

Unusual dijet signatures that could arise from a QCD-like dark sector.

• Assume a heavy mediator Z' links dark sector and visible sector

09279			N_d	n_f	Λ_d (GeV)	$\widetilde{m}_{q'}$ (GeV)	$\begin{array}{c} m_{\pi_d} \ ({ m GeV}) \end{array}$	$\binom{m_{ ho_d}}{(\text{GeV})}$			
		A	3	2	15	20	10	50			
12		В	3	6	2	2	2	4.67			
<u>v:17</u>		C	3	2	15	20	10	50			
<u>arXi</u>		D	3	6	2	2	2	4.67			
Model A, C											

Consider 4 benchmark models..

- Compared to the SM, the dark jets have:
- stronger running couplings
- more soft particles (=> more tracks)
- larger jets, due to double hadronization

Graphics by: C. Doglioni, K. Pedro

Tagging Dark Jets

mjj

Preselection

Triggers:

HLT_j460_a10_sub_L1J100 for 2015 and 2016 HLT_j460_a10t_lcw_jes_L1J100 for 2017 and 2018

 $\begin{array}{l} \mbox{Preselection cuts: (Twiki)} \\ \mbox{Two R = 1.0 trimmed LCTopo jets} \\ |\eta(j_{1,2})| < 2.0 \\ p_{\rm T}(j_1) > 500 \ {\rm GeV} \ , p_{\rm T}(j_2) > 400 \ {\rm GeV} \\ m(j_{1,2}) > 50 \ {\rm GeV} \\ p_{\rm T}(j_{1,2}) < 50 \ {\rm GeV} \\ m(j_{1,2}) < 3000 \ {\rm GeV} \\ m(j_{1,2}) < 600 \ {\rm GeV} \end{array}$

For background Monte Carlo (di-jet quality cut):

 $0.7 < \frac{p_{\rm T}^{\rm leading jet} + p_{\rm T}^{\rm subleading jet}}{2 \times p_{\rm T}^{\rm leading truth jet}} < 1.3$

Derivation: EXOT3 Analysis framework: <u>xAODAnaHelpers</u>. **Useful links:** <u>Glance</u>, <u>Analysis code</u>, <u>Internal note</u>.

- signal distributions are:
 - relatively broad
 - \circ ~ shifted to lower values than Z' mass
- no trimming => narrower signal peak BUT would increase background significantly

Trigger Turn Ons

Make it linear with 3 plots...