Dark Shower Developments in Herwig

Suchita Kulkarni¹, Mohammad R. Masouminia², <u>Dominic Stafford³</u>, Simon Plätzer¹

University of Graz
IPPP, Durham University
DESY CMS Group

17.10.2023

Motivation

- Unlike most BSM models, dark showers involve new physics at a range of energies
- Includes non-perturbative physics
 - described by semi-empirical models
 - Tuned to SM data
- Herwig uses different models to Pythia
 - Can act as cross-check
 - Is more predictive for some observables

Benchmark model

- For testing, took one of the proposed benchmark models from Snowmass 2021 report
- Dark quarks produced by 1 TeV dark photon, confined by an SU(3)_{dark} symmetry
- Strength of dark force parameterised by the confinement scale $\Lambda_{_D}$ ($\alpha_{_D}$ evolved using 2-loop running)
- Four mass-degenerate quark flavours
- Possible dark hadrons are pions (π_{D}) , etas (η_{D}) and rhos (ρ_{D})
 - Dark baryons not yet implemented, but plan to add these soon

Benchmark model (cont.)

- $m_{\pi D}$ is a free parameter
- Other masses can then be estimated from lattice
- Take $m_{\pi D} = 1.7 \Lambda_D$
 - $m_{\rho D} < 2 m_{\pi D}$
 - π_{D} stable, ρ_{D} decay to SM particles
- Take benchmarks with $\Lambda_{_{\rm D}} = 10$ GeV and $\Lambda_{_{\rm D}} = 1$ GeV

	1 GeV	10 GeV
m _{πD}	1.7 GeV	17 GeV
m _{ρD}	3.18 GeV	31.8 GeV
m _{ηD}	3.86 GeV	38.6 GeV
m _{qD}	0.955 GeV	9.55 GeV

Dark parton shower

- The parton shower consists of a set of splitting kernels (perturbative)
- Based on BSM extension of Herwig angular ordered parton shower [Massoumina, in progress]
- Dark splittings now implemented, and can be turned on and off in configuration

Dark parton shower validation

- For testing, generated events with dark photon decaying to only one flavour of dark quark (q_D⁰), then emissions added by PS
- Shower adds a large number of gluons, especially at lower energies
- Low energy gluons suppressed for $\Lambda_{D} = 10$ GeV by shower cut-off

 $g_D p_t$ Multiplicity 10^{-1} $+\Lambda_D = 1 \text{ GeV}$ $\Lambda_D = 10 \text{ GeV}$ 10^{-2} 10^{-} 10^{-} 10^{-5} 1.4 Ratio 1.2 0.8 0.6 300 500 100 200 400 0

Dark parton shower validation

- Quark flavours 1-3 generated only by PS
- Quarks are produced much more rarely in the PS than gluons as these can only be produced by gluon splittings
- Especially true for $\Lambda_D = 10$ GeV due to high shower cut-off

 q_D^i $(i\in 1,2,3)$ p_t

Dark parton shower validation

- Harder $q_D^0 p_T$ spectrum for $\Lambda_D = 10$ GeV since fewer particles emitted
- Non-negligible fraction of events have $q_D^0 p_T = 500$ GeV (especially for $\Lambda_D = 10$ GeV) => high non-emision priority

Cluster Hadronisation Model

- Hadronisation is non-peturbative => Semiempirical models, tuned to SM data
- Herwig uses the cluster hadronisation model:
 - Gluons are split into qq pairs
 - Colour connected qq pairs form clusters (representing heavy pseudo-hadrons)
 - Very heavy clusters decay by springing qq pair from vacuum
 - Clusters decay to two hadrons (again by springing qq pair from vacuum) according to phase space and number of available spin-states

Dark Hadronisation

- Hadronisation code generalised to allow multiple confining interactions
- New DarkHadronSpectrum allows adding arbitrary spectrum of dark quarks and hadrons
- Free parameters must be assigned based on SM values and physical intuition
 - Ongoing work to give better physical motivations to these parameters

Cluster fissioning

- Initial clusters have large range of masses (down to minimum determined by shower cut-off)
- Very heavy clusters are unphysical (especially 1 TeV clusters due to no emissions in shower)
- Split clusters over 17 Λ_{D} (motivated by SM value)
- Parameters controlling mass of daughter clusters left at SM values

Hadron flavours

- The production rate of spin-1 to spin-0 mesons is a free parameter in Pythia's Lund string model
- Cluster hadronisation is predictive (based on phase space and spin states)
- Fractions of spin states obtained from Herwig provide useful check of recommended input values for Pythia

	Snowmass Pythia validation	Herwig prediction
π _D	42%	43%
ρ _D	58%	56%
η _D	Neglected for this benchmark	0.9%

Dark decays

- Most decays can be implemented in input cards using existing Herwig classes
- For $\Lambda_{D} >> \Lambda_{QCD}$ dark hadrons will decay to free SM quarks
 - Can use existing quarkonium decayer
- New class added for three body decay to dark hadron + SM quarks
 - Parameters to control decay phase space still to be added

Phenomenological studies

- Currently working on sensitivity studies
 - Initially focusing on e⁺e⁻ due to clean state
- Planning to study jet substructure variables such as angularities
- Will also serve as final validation of code

Missing Transverse Momentum

Outlook

- Dark shower model implemented in Herwig
- Phenomenological studies ongoing
- Aim to include in Herwig 7.4 release (early 2024), together with other hadronisation improvements (should reduce depency on SM tunes)
- Will provide useful complement to existing Pythia predictions