Phenomenological aspects of modular symmetry

Kei Yamamoto

Hiroshima Institute of Technology \rightarrow Iwate University

Open Questions and Future Directions in Flavour Physics Mainz Institute for Theoretical Physics I5 November 2024

Phenomenological aspects

SMEFT with modular symmetry Kobayashi, Otsuka, Tanimoto, KY 2204.12325

Baryon/Lepton-number violating operator

Kobayashi, Nishimura, Otsuka, Tanimoto, KY 2207.14014

Summary

Flavor mixing puzzle

Flavor puzzle

Discrete symmetry has been studied well to describe large mixing angle in neutrino

Modular group often appears in the superstring theory

Compactification of the superstring theory

2D torus (T^2) is equivalent parallelogram with identification

supermeinget 4D effective Langrahiging fishing integra 2D torus × 3-6D.

 $C = \int A4 \sqrt{A6} \sqrt{C}$ Two dimensional torus is characterized by modulu: 2D torus (T^2) is equivalent to parallelogram with identification of confronted sides $T^2 = \int \frac{1}{2} \sqrt{C} \sqrt{C}$

 $\begin{pmatrix} \alpha_2 \\ \alpha'_1 \end{pmatrix} = \begin{pmatrix} \alpha & \sigma \\ c & d \end{pmatrix} \begin{pmatrix} \alpha_2 \\ \alpha_1 \end{pmatrix}$

$$S: \tau \to -\frac{1}{\tau} \qquad T: \tau \to \tau + 1$$

Modular group
$$\Gamma \simeq \{S, T | S^2 = \mathbb{I}, (ST)^3 = \mathbb{I}\}$$

$$\Gamma_N \simeq \{S, T | S^2 = \mathbb{I}, (ST)^3 = \mathbb{I}, T^N = \mathbb{I}\}$$

$$N = 2$$
 $\Gamma_2 \simeq S_3$ $N = 3$ $\Gamma_3 \simeq A_4$ $N = 4$ $\Gamma_4 \simeq S_4$ $N = 5$ $\Gamma_5 \simeq A_5$

IOD Superstring theory

Compactification 4D our universe + 2D torus × 3

4D theory (SUSY) Γ_N symmetry (modular)

Expectation value of modulus τ breaks the symmetry

Low scale phenomenology

SUSY breaking terms are invariant (covariant) under modular transformation in moduli-mediated SUSY breaking scenario T. Kobayashi, H. Otsuka [2108.02700]

We can consider modular invariant SMEFT ($\mu_{EW} < \mu < \mu_{NP}$) by supposing modular forms to be *spurion*

 \rightarrow see Ajdin's talk

A₄ symmetry

Non-Abelian discrete symmetry A_4 group could be adjusted to family symmetry: The minimum group containing triplet Irreducible representations: I, I'', I', 3 $\leftarrow e_R$, μ_R , τ_R , (e_L, μ_L, τ_L)

	L_L	(e_R^c,μ_R^c,τ_R^c)	H_d
SU(2)	2	1	2
A_4	3	(1,1'',1')	1

A₄ modular symmetry

Non-Abelian discrete symmetry A_4 group could be adjusted to family symmetry: The minimum group containing triplet Irreducible representations: I, I'', I', 3 $4 - e_R$, μ_R , τ_R , (e_L, μ_I, τ_I)

	L_L	(e_R^c,μ_R^c, au_R^c)	H_d	$Y(\tau_e)$	mod
SU(2)	2	1	2	1	
A_4	3	(1,1'',1')	1	3	
k	2	(0, 0, 0)	0	2	k_i : m

modular form

k_i : modular weights

Effective theories with Γ_N symmetry

modular form

 $\mathscr{L}_{\text{eff}} \operatorname{\textbf{Dotable}}(J)$

Holomorphic functions which

transform under modular trans., are

called modular for the weights (Th Theis, Ph Physelete B 223, 24, 1989)

$$Y_{\mu}(p) \rightarrow ((c(\tau,\tau)) + (c(\tau,\tau)) + (c(\tau,\tau))$$

 $\alpha(f(-)) = \alpha(f(-)) \mathbf{I}(k_{1}, f(\alpha)) f(-)$

 $\Gamma_{\cdot}\Gamma_{N}$

chiral superfield with modular weight k_I transforms as

$$\phi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \phi^{(I)}$$

A₄ modular symmetry

Non-Abelian discrete symmetry A_4 group could be adjusted to family symmetry: The minimum group containing triplet $e_R , \mu_R , \tau_R , (e_I, \mu_I, \tau_I)$ Irreducible representations: I, I", I', 3

> $Y(\tau_e)$ H_d $(e_R^c, \mu_R^c, \tau_R^c)$ L_L modular form SU(2)2 2 1 1 $3 \mid (1, 1'', 1')$ A_4 1 3 k_i : modular weights 2 2 (0, 0, 0)()

Effective theories with Γ_N symmetry

modular form

 $\mathscr{L}_{\text{eff}} \mathbf{D} \mathcal{J}_{\text{ff}} \mathcal{J}_{\text{ff$

Holomorphic functions which transform under modular trans., are called modular form with weight k

$$Y(\tau) \to (c\tau + d)^k \int_{\mathcal{F}} \frac{f_i(\tau) \phi^{(I)} \phi^{(J)} H}{f_i(\tau) \phi^{(J)}} H$$

chiral superfield with modular weight S. Ferrara, D, Eust, A k_I transforms as

$$\phi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \phi^{(I)}$$

k

Automorphy factor $(c\tau + d)^k (c\tau + d)^{-k_I} (c\tau + d)^{-k_J} = (c\tau + d)^{k-k_I-k_J}$ vanishes if $\mathbf{k} = \mathbf{k}_{1} + \mathbf{k}_{1} \rightarrow Modular$ invariant

A₄ modular symmetry

Non-Abelian discrete symmetry A_4 group could be adjusted to family symmetry: The minimum group containing triplet Irreducible representations: I, I", I', 3 $\triangleleft e_R$, μ_R , τ_R , (e_I, μ_I, τ_I)

> H_d $Y(\tau_e)$ $(e_R^c, \mu_R^c, \tau_R^c)$ L_L modular form SU(2)2 2 1 1 $3 \mid (1, 1'', 1')$ A_4 1 3 2 (0, 0, 0)0

 k_i : modular weights

Effective theories with Γ_N symmetry

modular form

 \mathscr{L}_{eff} **Double \psi** $\mathcal{L} \phi$ $\mathcal{$

weight k for modular form: even for Γ_N

weight *k_I* for matter fields: <u>S</u>. Ferrara, D, Lust, A no restriction on the possible value, a priori

$$Y(\tau) \to (c\tau + d)^k f_i(\tau) \phi^{(I)} \phi^{(J)} H$$

$$\phi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \phi^{(I)}$$

Automorphy factor $(c\tau + d)^k (c\tau + d)^{-k_I} (c\tau + d)^{-k_J} = (c\tau + d)^{k-k_I-k_J}$ k vanishes if $\mathbf{k} = \mathbf{k}_{1} + \mathbf{k}_{1} \rightarrow Modular$ invariant

A4 modular symmetry

The holomorphic and anti-holomorphic modular forms with weight 2 compose the A_4 triplet

$$Y_{\mathbf{3}}^{(2)}(\tau) = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix}, \qquad \overline{Y_{\mathbf{3}}^{(2)}(\tau)} \equiv Y_{\mathbf{3}}^{(2)*}(\tau) = \begin{pmatrix} Y_1^*(\tau) \\ Y_3^*(\tau) \\ Y_2^*(\tau) \end{pmatrix}$$

Y_i (*i*=1,2,3) is a function of the modulus τ

$$\begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1+12q+36q^2+12q^3+\dots \\ -6q^{1/3}(1+7q+8q^2+\dots) \\ -18q^{2/3}(1+2q+5q^2+\dots) \end{pmatrix} \qquad q = e^{2\pi i \tau}$$

Once τ is determined, the Yukawa is fixed

Modular forms with higher weights k=4, 6 ... are constructed by them

$\simeq \{S, T | S^2 = \mathbb{I}, (ST)^3 = \mathbb{I}, T^N = \mathbb{I}\}$ A4 modular symmetry

Modular symmetry is broken once τ is fixed

<u>Fixed point for τ </u> from the view point of the vacuum stability study

At exact fixed point, CP is not violated \rightarrow need small deviation from these point : $\tau = (\text{fixed point}) + \epsilon$

phenomenologically $\mathcal{O}(\epsilon) \sim 10^{-2}$

Phenomenological aspects

SMEFT with modular symmetry Kobayashi, Otsuka, Tanimoto, KY 2204.12325

Baryon/Lepton-number violating operator

Kobayashi, Nishimura, Otsuka, Tanimoto, KY 2207.14014

Summary

Modular symmetry in SMEFT

String Ansatz

T. Kobayashi, H. Otsuka [2108.02700]

n-point couplings yⁿ of matter fields are written by products of 3-point couplings

String compactifications leads to 4-dim low energy field theories with the specific structure

Strategy

• $\tau = i\infty$ (*T* symmetry)

write down fermionic SMEFT operator so as to be invariant at A_4 and modular symmetry

focus on $(\bar{L}R)$ bilinear structure in lepton sector

expand modular forms $Y(\tau)$ at three fixed point, and then include small deviation : $\tau = (\text{fixed point}) + \epsilon$ $\tau = \omega \quad (ST \text{ symmetry})$ $\tau = i \quad (S \text{ symmetry})$

focus on $\tau = i$ case

diagonalize the mass matrix and move to mass eigenstate basis

pheno. study

 $(g-2)_{\mu}$, Lepton flavor violation, EDM

	L_L	(e_R^c,μ_R^c, au_R^c)	H_d	$Y(\tau_e)$
SU(2)	2	1	2	1
A_4	3	(1, 1'', 1')	1	3
k	2	(0, 0, 0)	0	2

* γ_{μ} structure Γ is omitted

 $[\bar{L}_R L_L] \\ A_4: \quad \{1, 1'', 1'\} \otimes 3 \\ k_I: \quad 0 \quad -2$

not invariant both $A_{\rm 4}$ and modular

	L_L	(e_R^c,μ_R^c, au_R^c)	H_d	$Y(\tau_e)$
SU(2)	2	1	2	1
A_4	3	(1, 1'', 1')	1	3
k	2	(0, 0, 0)	0	2

* γ_{μ} structure Γ is omitted

 $\begin{array}{c} \text{modular form} \\ [\bar{L}_R L_L] & & [\bar{L}_R Y(\tau_q) L_L] \\ A_4: & \{1,1'',1'\} \otimes 3 & \{1,1'',1'\} \otimes 3 \otimes 3 \\ k_I: & 0 & -2 & 0 & 2 & -2 \end{array}$

not invariant both $A_{\rm 4}$ and modular

invariant

$$\begin{split} [\bar{L}_R \otimes Y(\tau) \otimes L_L]_1 &= \alpha_e \ \bar{e}_R \otimes (Y_1 e_L + Y_2 \tau_L + Y_3 \mu_L)_1 + \beta_e \ \bar{\mu}_R \otimes (Y_2 \mu_L + Y_1 \tau_L + Y_3 e_L)_{1''} \\ &+ \gamma_e \ \bar{\tau}_R \otimes (Y_3 \tau_L + Y_1 \mu_L + Y_2 e_L)_{1'} \\ &= (\bar{e}_R, \bar{\mu}_R, \bar{\tau}_R) \begin{pmatrix} \alpha_e & 0 & 0 \\ 0 & \beta_e & 0 \\ 0 & 0 & \gamma_e \end{pmatrix} \begin{pmatrix} Y_1(\tau) & Y_3(\tau) & Y_2(\tau) \\ Y_2(\tau) & Y_1(\tau) & Y_3(\tau) \\ Y_3(\tau) & Y_2(\tau) & Y_1(\tau) \end{pmatrix} \begin{pmatrix} e_L \\ \mu_L \\ \tau_L \end{pmatrix} \end{split}$$

Same structure with mass matrix :

$$M_{e} = v_{d} \begin{pmatrix} \alpha_{e(m)} & 0 & 0 \\ 0 & \beta_{e(m)} & 0 \\ 0 & 0 & \gamma_{e(m)} \end{pmatrix} \begin{pmatrix} Y_{1}(\tau) & Y_{3}(\tau) & Y_{2}(\tau) \\ Y_{2}(\tau) & Y_{1}(\tau) & Y_{3}(\tau) \\ Y_{3}(\tau) & Y_{2}(\tau) & Y_{1}(\tau) \end{pmatrix}_{RL}$$

if virtual mode is only higgs

 $\begin{array}{l} \Phi_i \\ \gamma_{ijm}^{(3)} & h \end{array} \propto Yukawa \qquad \qquad \alpha_e = c\alpha_{e(m)}, \ \beta_e = c\beta_{e(m)}, \ \gamma_e = c\gamma_{e(m)} \\ \Phi_j & \rightarrow \text{ no flavor changing like } \mu \to e \end{array}$

$$\begin{split} [\bar{L}_R \otimes Y(\tau) \otimes L_L]_1 &= \alpha_e \ \bar{e}_R \otimes (Y_1 e_L + Y_2 \tau_L + Y_3 \mu_L)_1 + \beta_e \ \bar{\mu}_R \otimes (Y_2 \mu_L + Y_1 \tau_L + Y_3 e_L)_{1''} \\ &+ \gamma_e \ \bar{\tau}_R \otimes (Y_3 \tau_L + Y_1 \mu_L + Y_2 e_L)_{1'} \\ &= (\bar{e}_R, \bar{\mu}_R, \bar{\tau}_R) \begin{pmatrix} \alpha_e & 0 & 0 \\ 0 & \beta_e & 0 \\ 0 & 0 & \gamma_e \end{pmatrix} \begin{pmatrix} Y_1(\tau) & Y_3(\tau) & Y_2(\tau) \\ Y_2(\tau) & Y_1(\tau) & Y_3(\tau) \\ Y_3(\tau) & Y_2(\tau) & Y_1(\tau) \end{pmatrix} \begin{pmatrix} e_L \\ \mu_L \\ \tau_L \end{pmatrix} \end{split}$$

Same structure with mass matrix :

$$M_{e} = v_{d} \begin{pmatrix} \alpha_{e(m)} & 0 & 0 \\ 0 & \beta_{e(m)} & 0 \\ 0 & 0 & \gamma_{e(m)} \end{pmatrix} \begin{pmatrix} Y_{1}(\tau) & Y_{3}(\tau) & Y_{2}(\tau) \\ Y_{2}(\tau) & Y_{1}(\tau) & Y_{3}(\tau) \\ Y_{3}(\tau) & Y_{2}(\tau) & Y_{1}(\tau) \end{pmatrix}_{RL}$$

if there are additional unknown modes (e.g. multi Higgs modes)

$$\begin{array}{c} \Phi_i \\ \downarrow \\ y_{ijm}^{(3)} \\ h' \end{array} \xrightarrow{} h' \quad \forall \text{Yukawa} \qquad \rightarrow \text{it causes flavor violations} \\ \Phi_i \end{array}$$

Suppose unknown mode contribution being small and couplings are Higgs-like

$$\alpha_e - \alpha_{e(m)} \ll \alpha_e, \quad \beta_e - \beta_{e(m)} \ll \beta_e, \quad \gamma_e - \gamma_{e(m)} \ll \gamma_e$$

$$\begin{split} [\bar{L}_R \otimes Y(\tau) \otimes L_L]_1 &= \alpha_e \ \bar{e}_R \otimes (Y_1 e_L + Y_2 \tau_L + Y_3 \mu_L)_1 + \beta_e \ \bar{\mu}_R \otimes (Y_2 \mu_L + Y_1 \tau_L + Y_3 e_L)_{1''} \\ &+ \gamma_e \ \bar{\tau}_R \otimes (Y_3 \tau_L + Y_1 \mu_L + Y_2 e_L)_{1'} \end{split}$$

$$\begin{aligned} & \frac{\tilde{\beta}_e}{\tilde{\beta}_{e(m)}} = \frac{\tilde{\beta}_{e(m)} + c_{\beta}}{\tilde{\beta}_{e(m)}} = 1 + \frac{c_{\beta}}{\tilde{\beta}_{e(m)}} \equiv 1 + \delta_{\beta} ,\\ & \frac{\tilde{\alpha}_e}{\tilde{\alpha}_{e(m)}} = \frac{\tilde{\alpha}_{e(m)} + c_{\alpha}}{\tilde{\alpha}_{e(m)}} = 1 + \frac{c_{\alpha}}{\tilde{\alpha}_{e(m)}} \equiv 1 + \delta_{\alpha} ,\\ & \frac{\tilde{\gamma}_e}{\tilde{\gamma}_{e(m)}} = \frac{\tilde{\gamma}_{e(m)} + c_{\gamma}}{\tilde{\gamma}_{e(m)}} = 1 + \frac{c_{\gamma}}{\tilde{\gamma}_{e(m)}} \equiv 1 + \delta_{\gamma} , \end{aligned}$$

if there are additional unknown modes (e.g. multi Higgs modes)

$$\begin{array}{c} \Phi_i \\ \downarrow \\ y_{ijm}^{(3)} \\ h' \end{array} \xrightarrow{} h' \end{array} \xrightarrow{} it causes flavor violations \\ \Phi_i \end{array}$$

Suppose unknown mode contribution being small and couplings are Higgs-like

$$\alpha_e - \alpha_{e(m)} \ll \alpha_e, \quad \beta_e - \beta_{e(m)} \ll \beta_e, \quad \gamma_e - \gamma_{e(m)} \ll \gamma_e$$

Strategy

• $\tau = i\infty$ (*T* symmetry)

write down fermionic SMEFT operator so as to be invariant at A_4 and modular symmetry

focus on $(\overline{L}R)$ bilinear structure in lepton sector

expand modular forms $Y(\tau)$ at three fixed point, and then include small deviation : $\tau = (\text{fixed point}) + \epsilon$ $\tau = \omega \quad (ST \text{ symmetry})$ $\tau = i \quad (S \text{ symmetry})$

focus on $\tau = i$ case

diagonalize the mass matrix and move to mass eigenstate basis

```
pheno. study
```

 $(g-2)_{\mu}$, Lepton flavor violation, EDM

at $\tau = i$ (S symmetry); Diagonalization

Results of $(\overline{L}R)$ structure in interaction basis

$$\begin{split} & \begin{array}{c|c} \hline RL & \mu_R \Gamma \tau_L & \bar{e}_R \Gamma \tau_L & \bar{e}_R \Gamma \mu_L \\ \hline LR & \mu_L \Gamma \tau_R & \bar{e}_L \Gamma \tau_R & \bar{e}_L \Gamma \mu_R \\ \hline & \bar{\mu}_L \Gamma \tau_R & \bar{e}_L \Gamma \mu_R \\ \hline & \bar{e}_L \Gamma \mu_R \\ \hline$$

Mass eigenstate basis at $\tau = i$ and $\tau = i + \epsilon$

at $\tau = i$ (S symmetry); Diagonalization

Mass eigenstate basis at $\tau = i$ and $\tau = i + \epsilon$

$\bar{\mu}_R \Gamma \tau_L$	$ar{e}_R \Gamma au_L$	$\bar{e}_R \Gamma \mu_L$
$ar{\mu}_L \Gamma au_R$	$ar{e}_L\Gamma au_R$	$ar{e}_L\Gamma\mu_R$
$\frac{\sqrt{3}}{2}(\tilde{\alpha}_e + 2s^e_{R23}\tilde{\gamma}_e)$	$\frac{\sqrt{3}}{2}(\tilde{\beta}_{e} - s^{e}_{12R}\tilde{\alpha}_{e} + 2(s^{e}_{R13} - s^{e}_{R12}s^{e}_{R23})\tilde{\gamma}_{e})$	$\frac{\frac{3}{2}(\tilde{\beta}_e + s^e_{12R}\tilde{\alpha}_e)}{\mathbf{V}}$
$(\sqrt{3}s^{e}_{23L} + s^{e}_{12L} \epsilon^*_1)\tilde{\gamma}_e - \frac{3}{2}s^{e}_{R23}\tilde{\alpha}_e$	$(\sqrt{3}s^e_{13L} + \epsilon^*_1)\tilde{\gamma}_e$	$\frac{1}{2}(3s_{12L}^e - \sqrt{3}s_{13L}^e + 2 \epsilon_1^*)\tilde{\alpha}_e$

$$s_{L12}^{e} \simeq -|\epsilon_{1}^{*}|, \qquad s_{L23}^{e} \simeq -\frac{\sqrt{3}}{4} \frac{\tilde{\alpha}_{e(m)}^{2}}{\tilde{\gamma}_{e(m)}^{2}}, \qquad s_{L13}^{e} \simeq -\frac{\sqrt{3}}{3} |\epsilon_{1}^{*}|, \\ s_{R12}^{e} \simeq -\frac{\tilde{\beta}_{e(m)}}{\tilde{\alpha}_{e(m)}}, \qquad s_{R23}^{e} \simeq -\frac{1}{2} \frac{\tilde{\alpha}_{e(m)}}{\tilde{\gamma}_{e(m)}}, \qquad s_{R13}^{e} \simeq -\frac{1}{2} \frac{\tilde{\beta}_{e(m)}}{\tilde{\gamma}_{e(m)}}, \\ \tilde{\alpha}_{e(m)} = (6 - 3\sqrt{3}) Y_{1}(i) \alpha_{e(m)}, \quad \tilde{\beta}_{e(m)} = (6 - 3\sqrt{3}) Y_{1}(i) \beta_{e(m)} \text{ and } \quad \tilde{\gamma}_{e(m)} = (6 - 3\sqrt{3}) Y_{1}(i) \gamma_{e(m)}$$

parameters: modulus τ , small deviation from fixed point ϵ_1 , coefficients $\alpha_e, \beta_e, \gamma_e$

Best fit values of parameters in A4 modular invariant model to realize lepton mass matrix, neutrino data *Okada and Tanimoto*[2012.01688]

$$\tau = -0.080 + 1.007 \, i \,, \quad |\epsilon_1| = 0.165 \,, \quad \frac{\tilde{\alpha}_{e(m)}}{\tilde{\gamma}_{e(m)}} \simeq \frac{\tilde{\alpha}_e}{\tilde{\gamma}_e} = 6.82 \times 10^{-2} \,, \quad \frac{\tilde{\beta}_{e(m)}}{\tilde{\alpha}_{e(m)}} \simeq \frac{\tilde{\beta}_e}{\tilde{\alpha}_e} = 1.50 \times 10^{-2} \,.$$

\rightarrow predict flavor observables

Strategy

write down fermionic SMEFT operator so as to be invariant at A_4 and modular symmetry

focus on $(\bar{L}R)$ bilinear structure in lepton sector

Expand modular forms $Y(\tau)$ at three fixed point, and then include small deviation : $\tau = ($ fixed point $) + \epsilon$

focus on $\tau = i$ case

I diagonalize the mass matrix and move to mass eigenstate basis

```
pheno. study
```

 $(g-2)_{\mu}$, Lepton flavor violation, EDM

Lepton dipole operator

 $(g-2)_{\mu} \& \mu \to e\gamma$

$$(g-2)_{\mu} \& \mu \to e\gamma$$

Wilson coefficients in A4 modular symmetry in mass basis

$$\begin{split} \mathcal{C}_{e\gamma}'_{ee} &= 3\left(1-\sqrt{3}\right)\tilde{\beta}_{e}|\epsilon_{1}^{*}|\,, \qquad \mathcal{C}_{e\gamma}'_{\mu\mu} = \frac{3}{2}\left(1-\sqrt{3}\right)\tilde{\alpha}_{e}\,, \qquad \mathcal{C}_{e\gamma}'_{\tau\tau} = \sqrt{3}\left(1-\sqrt{3}\right)\tilde{\gamma}_{e} \qquad \mathcal{C}_{e\gamma}'_{LR} \\ \mathcal{C}_{e\gamma}'_{\tau\mu} &= \frac{\sqrt{3}}{2}\left(1-\sqrt{3}\right)\tilde{\alpha}_{e}\left(1-\frac{\tilde{\gamma}_{e}}{\tilde{\gamma}_{e(m)}}\frac{\tilde{\alpha}_{e(m)}}{\tilde{\alpha}_{e}}\right)\,, \\ \mathcal{C}_{e\gamma}'_{\tau e} &= \frac{\sqrt{3}}{2}\left(1-\sqrt{3}\right)\tilde{\beta}_{e}\left(1+\frac{\tilde{\alpha}_{e}}{\tilde{\alpha}_{e(m)}}\frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_{e}}-2\frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_{e}}\frac{\tilde{\gamma}_{e}}{\tilde{\gamma}_{e(m)}}\right) \\ \mathcal{C}_{e\gamma}'_{\mu e} &= \frac{3}{2}\left(1-\sqrt{3}\right)\tilde{\beta}_{e}\left(1-\frac{\tilde{\alpha}_{e}}{\tilde{\alpha}_{e(m)}}\frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_{e}}\right)\,, \end{split}$$

$$\mathcal{L} = \begin{pmatrix} \mathcal{C}_{e\gamma}' & \mathcal{C}_{e\gamma}' & \mathcal{C}_{e\gamma}' \\ \mathcal{C}_{ee}' & \mathcal{C}_{e\mu}' & \mathcal{C}_{e\gamma}' \\ \mathcal{C}_{e\gamma}' & \mathcal{C}_{e\gamma}' & \mathcal{C}_{e\gamma}' \\ \mathcal{C}_{e\gamma}' & \mathcal{C}_{e\gamma}' & \mathcal{C}_{e\gamma}' \\ \mathcal{T}_{e}' & \tau_{\mu}' & \tau_{\tau} \end{pmatrix}$$

 $\begin{vmatrix} \frac{\mathcal{C}'_{e\gamma}}{\mathcal{C}'_{e\gamma}}\\ \frac{\mathcal{C}'_{e\gamma}}{\mathcal{C}'_{\mu\mu}} \end{vmatrix} = \frac{\tilde{\beta}_e}{\tilde{\alpha}_e} \begin{vmatrix} 1 - \frac{\tilde{\alpha}_e}{\tilde{\alpha}_{e(m)}} \frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_e} \end{vmatrix} \quad \begin{array}{c} \text{flavor alignment} \\ < 2.1 \times 10^{-5} \end{vmatrix}$

$$\begin{aligned} \frac{\beta_e}{\tilde{\beta}_{e(m)}} &= \frac{\beta_{e(m)} + c_{\beta}}{\tilde{\beta}_{e(m)}} = 1 + \frac{c_{\beta}}{\tilde{\beta}_{e(m)}} \equiv 1 + \delta_{\beta} ,\\ \frac{\tilde{\alpha}_e}{\tilde{\alpha}_{e(m)}} &= \frac{\tilde{\alpha}_{e(m)} + c_{\alpha}}{\tilde{\alpha}_{e(m)}} = 1 + \frac{c_{\alpha}}{\tilde{\alpha}_{e(m)}} \equiv 1 + \delta_{\alpha} ,\\ \frac{\tilde{\gamma}_e}{\tilde{\gamma}_{e(m)}} &= \frac{\tilde{\gamma}_{e(m)} + c_{\gamma}}{\tilde{\gamma}_{e(m)}} = 1 + \frac{c_{\gamma}}{\tilde{\gamma}_{e(m)}} \equiv 1 + \delta_{\gamma} ,\end{aligned}$$

$$\left|1 - \frac{\tilde{\alpha}_e}{\tilde{\alpha}_{e(m)}} \frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_e}\right| \simeq |\delta_\beta - \delta_\alpha| < 1.4 \times 10^{-3}$$

without tuning between $\delta_{\alpha,\beta}$, $|\delta_{\alpha}| < \mathcal{O}(10^{-3})$, $|\delta_{\beta}| < \mathcal{O}(10^{-3})$

LFV
$$\tau \rightarrow \mu \gamma \& \tau \rightarrow e \gamma \& \mu \rightarrow e \gamma$$

Wilson coefficients in A4 modular symmetry in mass basis

$$\begin{aligned} \text{coefficients in A4 modular symmetry in mass basis} \\ \mathcal{C}_{e\gamma}' = 3 (1 - \sqrt{3}) \tilde{\beta}_{e} |\epsilon_{1}^{*}|, \quad \mathcal{C}_{e\gamma}' = \frac{3}{2} (1 - \sqrt{3}) \tilde{\alpha}_{e}, \quad \mathcal{C}_{e\gamma}' = \sqrt{3} (1 - \sqrt{3}) \tilde{\gamma}_{e} \qquad \mathcal{C}_{e\gamma}' = \mathcal{C}_{e\gamma}' \quad \mathcal{C}_{e\gamma}' \quad \mathcal{C}_{e\gamma}' \\ \mathcal{C}_{e\gamma}' = \frac{3}{2} (1 - \sqrt{3}) \tilde{\alpha}_{e} \left(1 - \frac{\tilde{\gamma}_{e}}{\tilde{\gamma}_{e(m)}} \frac{\tilde{\alpha}_{e(m)}}{\tilde{\alpha}_{e}}\right), \\ \mathcal{C}_{e\gamma}' = \frac{\sqrt{3}}{2} (1 - \sqrt{3}) \tilde{\alpha}_{e} \left(1 + \frac{\tilde{\alpha}_{e}}{\tilde{\alpha}_{e(m)}} \frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_{e}} - 2 \frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_{e}} \frac{\tilde{\gamma}_{e}}{\tilde{\gamma}_{e(m)}}\right) \\ \mathcal{C}_{e\gamma}' = \frac{3}{2} (1 - \sqrt{3}) \tilde{\beta}_{e} \left(1 - \frac{\tilde{\alpha}_{e}}{\tilde{\alpha}_{e(m)}} \frac{\tilde{\beta}_{e(m)}}{\tilde{\beta}_{e}}\right), \end{aligned}$$

the case that the additional unknown mode is the Higgs-like mode $(\delta_{\alpha} \sim \delta_{\beta} \sim \delta_{\gamma})$

$$\frac{\mathcal{C}'_{\frac{e\gamma}{\tau_e}}}{\mathcal{C}'_{\frac{\mu}{\mu_e}}} = \frac{1}{\sqrt{3}} \times \mathcal{O}(1) \qquad \qquad \frac{\mathcal{C}'_{\frac{e\gamma}{\tau_e}}}{\mathcal{C}'_{\frac{e\gamma}{\tau_\mu}}} = \frac{\tilde{\beta}_e}{\tilde{\alpha}_e} \times \mathcal{O}(1) \sim 10^{-2}$$

$$\mathsf{BR}(\tau \to \mu \gamma) \gg \mathsf{BR}(\mu \to e \gamma) \thicksim \mathsf{BR}(\tau \to e \gamma)$$

e.g. U(2) case $BR(\tau \rightarrow \mu \gamma) \gg BR(\mu \rightarrow e \gamma) \gg BR(\tau \rightarrow e \gamma)$

LFV
$$\tau \rightarrow \mu \gamma \& \tau \rightarrow e \gamma \& \mu \rightarrow e \gamma$$

Wilson coefficients in A4 modular symmetry in mass basis

$$\begin{aligned} \text{coefficients in A4 modular symmetry in mass basis} \\ \mathcal{C}_{e\gamma}' = 3 (1 - \sqrt{3}) \tilde{\beta}_{e} |\epsilon_{1}^{*}|, \quad \mathcal{C}_{e\gamma}' = \frac{3}{2} (1 - \sqrt{3}) \tilde{\alpha}_{e}, \quad \mathcal{C}_{e\gamma}' = \sqrt{3} (1 - \sqrt{3}) \tilde{\gamma}_{e} \qquad \mathcal{C}_{e\gamma}' = \mathcal{C}_{e\gamma}' \quad \mathcal{C}_{e$$

the case that the additional unknown mode is the Higgs-like mode $(\delta_{\alpha} \sim \delta_{\beta} \sim \delta_{\gamma})$

$$\frac{\mathcal{C}'_{\frac{e\gamma}{\tau_e}}}{\mathcal{C}'_{\frac{e\gamma}{\mu_e}}} = \frac{1}{\sqrt{3}} \times \mathcal{O}(1) \qquad \qquad \frac{\mathcal{C}'_{\frac{e\gamma}{\tau_e}}}{\mathcal{C}'_{\frac{e\gamma}{\tau_\mu}}} = \frac{\tilde{\beta}_e}{\tilde{\alpha}_e} \times \mathcal{O}(1) \sim 10^{-2}$$

 $BR(\tau \rightarrow \mu \gamma) \gg BR(\mu \rightarrow e \gamma) \sim BR(\tau \rightarrow e \gamma)$

Since the present upper bounds of $B(\tau \rightarrow e\gamma)$ and $B(\tau \rightarrow \mu\gamma)$ are 3.3 × 10⁻⁸ and 4.4 × 10⁻⁸, respectively, we expect the experimental test of this prediction for $\tau \rightarrow \mu \gamma$ in the future

EDM d_{ρ} & $(g-2)_{\mu}$

EDM
$$d_e \& (g-2)_{\mu} \& \mu \rightarrow e\gamma$$

electron EDM d_e

$$(g-2)_{\mu} \text{ with coupling relation}$$
in A4 modular sym.
$$\frac{1}{\Lambda^2} \text{Im} \bigotimes_{ee}^{e} < 1.6 \times 10^{-12} \text{ TeV}^{-2}$$

$$\frac{1}{\Lambda^2} \text{Re} \bigotimes_{ee}^{e} = 4.9 \times 10^{-8} \text{ TeV}^{-2}$$

$$\lim_{ee}^{e} \bigotimes_{ee}^{e} \simeq (\text{Im} \delta_{\beta}) < \frac{1.6 \times 10^{-12}}{4.9 \times 10^{-8}} = 3.3 \times 10^{-5}$$

$$\mathcal{C}_{ee}^{e} = 3 (1 - \sqrt{3}) \tilde{\beta}_e |\epsilon_1^*| = 3 (1 - \sqrt{3}) \tilde{\beta}_{e(m)} (1 + \delta_{\beta}) |\epsilon_1^*|$$

$$\text{Im} [\mathcal{C}_{ee}^{e}] \simeq 3 (1 - \sqrt{3}) \tilde{\beta}_{e(m)} (\text{Im} \delta_{\beta}) |\epsilon_1^*|, \quad \mathcal{C}_{ee}^{e} \simeq \frac{3}{2} (1 - \sqrt{3}) \tilde{\beta}_{e(m)} (\delta_{\beta} - \delta_{\alpha})$$
suppose
$$|\text{Im} \delta_{\beta}| \simeq |\delta_{\beta}| \text{ and } |\delta_{\alpha}| \simeq |\delta_{\beta}| (\text{ or } |\delta_{\alpha}| \ll |\delta_{\beta}|)$$

Upper bound for B($\mu \rightarrow {\rm e}\gamma) ~~ \mathcal{B}(\mu^+ \rightarrow e^+\gamma) < 2.3 \times 10^{-16}$

Phenomenological aspects

SMEFT with modular symmetry Kobayashi, Otsuka, Tanimoto, KY 2204.12325

Baryon/Lepton-number violating operator

Kobayashi, Nishimura, Otsuka, Tanimoto, KY 2207.14014

Summary

interactions \rightarrow Proton decay

 \rightarrow assume R-parity

B/L num. violating ope. can be forbidden by modular symmetry

Yukawa/Higher-dim. ops. : even-modular weights $(k_Y \in 2Z)$

modular form $f_i(\gamma \tau) = (c\tau + d)^k \rho_{ij}(\gamma) f_j(\tau)$ ρ : unitaly matrix

for S transformation $f_i(S^2\tau) = (-1)^k \rho_{ij}(S^2) f_j(\tau)$

$$(-1)^k \rho(S^2) = \mathbb{I}.$$
 (i) $k = \text{even}, \quad \rho(S^2) = \mathbb{I}, \text{ i.e., } \rho \in \Gamma_N,$
(ii) $k = \text{odd}, \quad \rho(S^2) = -\mathbb{I}, \text{ i.e., } \rho \in \Gamma'_N$

focus on Γ_N rather than its double cover Γ'_N

Superpotential $W = \sum_{n} Y_{I_{1}\cdots I_{n}}(\tau) \Phi_{I_{1}} \cdots \Phi_{I_{N}}$ Modular trf.: $\tau \rightarrow \gamma \tau = \frac{p\tau + q}{s\tau + t}$ Yukawa/Higher-dim.: Matters ϕ_{i} : (Modular wegiths (k_{i})) $Y(\tau) \rightarrow (s\tau + t)^{k_{Y}} \rho(\gamma) Y(\tau)$ $\phi_{i} \rightarrow (s\tau + t)^{-k_{i}} \rho_{i}(\gamma) \phi_{i}$

Modular invariance requires

modular weight
$$k_Y = \sum_i k_i$$

Superpotential in MSSM

 $W = y_{ij}^u Q_i H_u \overline{U}_j + y_{ij}^d Q_i H_d \overline{D}_j + y_{ij}^\ell L_i H_d \overline{E}_j + y_{ij}^n L_i H_u N_j + m_{ij}^n N_i N_j + \mu H_u H_d$

holomorphic modular forms of even modular weight chiral supermultiplets (Q,U,D,L,E,N,H) have integer modular weight k

modular invariance $k_Y = \sum_i k_i$ $k_i : modular weight$ $k_y^u - k_Q - k_{U,D} - k_{Higgs} = 0$ $k_y^d - k_Q - k_{U,D} - k_{Higgs} = 0$ $k^m - 2k_N = 0$ $k_y^\ell - k_L - k_{E,N} - k_{Higgs} = 0$ $k_\mu - 2k_{Higgs} = 0$ $k_y^n - k_L - k_{E,N} - k_{Higgs} = 0$ arrive at two constraints :

$$k_Q + k_{U,D} + k_{\text{Higgs}} = \text{even}$$

 $k_L + k_{E,N} + k_{\text{Higgs}} = \text{even}$

Higher-dim. ops. : even-modular weights → operator with even-modular weights : √

When k_{Higgs} is even weight $(k_Q, k_{U,D}, k_L, k_{E,N}, k_{\text{Higgs}})$

(i) Others are even \rightarrow B/L breaking

(ii) k_Q , $k_{U,D}$ is odd, k_L , $k_{E,N}$ is even \rightarrow L breaking $\checkmark: k_L + k_Q + k_D = even + odd + odd = even$ $\times: k_U + k_D + k_D = odd + odd = odd$

(iii) $k_Q, k_{U,D}$ is even, $k_L, k_{E,N}$ is odd \rightarrow B breaking

(iv) Others are odd \rightarrow B/L breaking are prohibited

→Realization of R-parity(Z2 sym) Possible in SU(5), SO(10) GUTs

	(i)	(ii)	(iii)	(iv)
Yukawa	\checkmark	\checkmark	\checkmark	\checkmark
$H_u H_d$	\checkmark	\checkmark	\checkmark	\checkmark
LH_u	\checkmark	\checkmark		
$LLar{E}$	\checkmark	\checkmark		
$LQ\bar{D}$	\checkmark	\checkmark		
$\bar{U}\bar{D}\bar{D}$	\checkmark		\checkmark	
QQQL	\checkmark			\checkmark
$\bar{U}\bar{U}\bar{D}\bar{E}$	\checkmark			\checkmark
$QQQH_d$	\checkmark		\checkmark	
$Q\bar{U}\bar{E}H_d$	\checkmark	\checkmark		
LH _u LH _u	\checkmark	\checkmark	\checkmark	\checkmark
$LH_uH_dH_u$	\checkmark	\checkmark		
$\bar{U}\bar{D}^*\bar{E}$	\checkmark	\checkmark		
$H_u^*H_d\bar{E}$	\checkmark	\checkmark		
$Q\bar{U}L^*$	\checkmark	\checkmark		
$QQ\bar{D}^*$	\checkmark		\checkmark	

B and/or L violating operator

Summary

Flavor puzzle (mass and mixing in quark and lepton) might be controlled by flavor symmetry

→ Modular flavor symmetry

Discrete symmetry \simeq Modular symmetry

We discuss pheno aspects from Modular flavor symmetry

- with SMEFT, predict Lepton flavor observables
- Baryon/Lepton-number violating operator can be controlled with modular weight

Approach to other models with $S_4, A_5 \dots$

to other flavor phenomena in the quark sector $b \rightarrow s \gamma \dots$