
Kei Yamamoto
Hiroshima Institute of Technology → Iwate University

Phenomenological aspects 
of modular symmetry

Open Questions and Future Directions in Flavour Physics
Mainz Institute for Theoretical Physics

15 November 2024



Modular symmetry 

Phenomenological aspects 

   SMEFT with modular symmetry 

   Baryon/Lepton-number violating operator 

Summary

Outline

Review, see e.g. Peskin

Kobayashi, Otsuka, Tanimoto, KY 2204.12325 

Kobayashi, Nishimura,Otsuka, Tanimoto, KY 2207.14014

https://arxiv.org/abs/2204.12325
https://arxiv.org/abs/2207.14014


Flavor puzzle

Flavor symmetry ?

e.g. U(2) flavor symmetry e.g. Discrete symmetry

・ Origin of flavor and CP : important issue in the SM

・ Hierarchical structure of quarks/lepton masses

→ Non-trivial structure of Yukawa couplings

Flavor puzzle
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Discrete symmetry has been studied well to describe large mixing angle in 
neutrino

“Traditional” flavor symmetry

𝜙𝑖 → 𝜌𝑖(𝑔)𝜙𝑖 𝑔 ∈ 𝐺flavor

・ Field transformations:
𝑔

・ Non-Abelian discrete symmetries
well explain the flavor structure in the lepton sector

・ Flavor symmetries should be broken. 
→Many free parameters in symmetry breaking sector
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E.g., Γ3 ≃ 𝐴4 :  Tetrahedral sym.

𝑚𝑖𝑗 𝜏 = 𝑚𝑖𝑗
0 + 𝑓𝑖𝑗(𝜏)

Vacum alignment determined by flavon fields 𝜏

e.g.  A4 discrete symmetry 
        : Tetrahedral sym. 

Recent hot topics: 

e.g. Discrete symmetry

Discrete symmetries  Modular symmetry ≃

Flavor puzzle

recent progress → see Modular workshop@Mainz, May 2024
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Compactification of the superstring theory

	�

Superstring theory 10D 
Our universe is      4D�

 The extra 6D 
 should be compactified.�

Torus compactification�

from  T.H.Tatsuishi’s slides  
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Superstring theory 10D 
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2D torus × 3our universesuperstring

compactification

Two dimensional torus is characterized by modulus τ

2D
complex
modulus 
parameter τ
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(x,y)!(x,y)+n1α1+n2α2�

Two-dimensional torus T2  is obtained as  
�����T2 = �2 / Λ                                      
    

Λ is two-dimensional lattice,  
which is spanned by two lattice vectors 

    �1=2πR    and  �2=2πR
  

The same lattice is spanned by other bases under the transformation�

ad-bc=1  
a,b,c,d are integer  SL(2,Z)�


 =�2 /�1 is a modulus parameter (complex).�
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2D lattice

Modular symmetry

Modular group often appears in the superstring theory



The paper is organized as follows.

2 A4 modular symmetry and flavor of quarks and leptons

2.1 Modular flavor symmetry

The modular group Γ̄ is the group of linear fractional transformations γ acting on the modulus τ ,
belonging to the upper-half complex plane as:

τ −→ γτ =
aτ + b

cτ + d
, where a, b, c, d ∈ Z and ad− bc = 1, Im[τ ] > 0 , (2)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,−I} transformation. This modular transformation
is generated by S and T ,

S : τ −→ −1

τ
, T : τ −→ τ + 1 , (3)

which satisfy the following algebraic relations,

S2 = I , (ST )3 = I . (4)

We introduce the series of groups Γ(N), called principal congruence subgroups, where N is the
level 1, 2, 3, . . . . These groups are defined by

Γ(N) =

{(
a b
c d

)
∈ SL(2,Z) ,

(
a b
c d

)
=

(
1 0
0 1

)
(modN)

}
. (5)

For N = 2, we define Γ̄(2) ≡ Γ(2)/{I,−I}. Since the element −I does not belong to Γ(N) for N > 2,
we have Γ̄(N) = Γ(N). The quotient groups defined as ΓN ≡ Γ̄/Γ̄(N) are finite modular groups. In
these finite groups ΓN , TN = I is imposed. The groups ΓN with N = 2, 3, 4, 5 are isomorphic to S3,
A4, S4 and A5, respectively [?].

Modular forms fi(τ) of weight k are the holomorphic functions of τ and transform as

fi(τ) −→ (cτ + d)kρ(γ)ijfj(τ) , γ ∈ Γ̄ , (6)

under the modular symmetry, where ρ(γ)ij is a unitary matrix under ΓN .
Under the modular transformation of Eq. (2), chiral superfields ψi (i denotes flavors) with weight

−k transform as [?],
ψi −→ (cτ + d)−kρ(γ)ijψj . (7)

We study global SUSY models. The superpotential which is built from matter fields and modular
forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given
modular forms this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter
fields ψi with the modular weight −k is given simply by

1

[i(τ̄ − τ)]k

∑

i

|ψi|2, (8)
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The modular group is defined as the transformation group , generated by S 
and T

γ

duality Discrete shift symmetry 

(a b
c d) = ( 0 1

−1 0) (a b
c d) = (1 1

0 1)

S : τ → − 1
τ

T : τ → τ + 1

Modular group Γ
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� ' {S, T |S2 = I, (ST )3 = I} (1.1)

S2 = �I , (ST )3 = I . (1.2)

———
Within the WET, the branching ratio of b ! s� is given by [?]

B(B ! Xs�)⇥ 104 =
⇥
3.26� 15.17 C7 � 0.77 C8 + 1.66 C7C8 + 1.36 C70C80 (1.3)

+ 18.03 (C2
7 + C2

70) + 0.20 C2
8 + 0.09 C2

80
⇤
⇥
�
1± 5%

�
,

where again we have absorbed the SM contributions CSM
a

into the constant term. The BSM
contributions of O7 and O70 are particularly large, due to a chiral enhancement of mW/mb

1

14

Modular transformation

• The modular group is defined as the transformation group  
acts on the modulus .

γ
τ

 PSL(2,ℤ) = SL(2,ℤ)/{I, − I}
I : unit matrix

τ → τ′ = γτ = aτ + b
cτ + d

, (a b
c d) ∈ PSL(2,ℤ)

SL(2,ℤ) = {(a b
c d) a, b, c, d ∈ ℤ, ad − bc = 1

• Generators of the modular group are  and .S T

 transformation :S τ → − 1
τ

 transformation :T τ → τ + 1

• Imposing the relation , the finite group, , of 
modular group is constructed.

(T )N = I ΓN

,  ,  ,  Γ2 ≅ S3 Γ3 ≅ A4 Γ4 ≅ S4 Γ5 ≅ A5

(2D lattice)’               (2D lattice)

Modular symmetry
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S : τ → − 1
τ

T : τ → τ + 1

Γ2 ≃ S3
Γ3 ≃ A4
Γ4 ≃ S4
Γ5 ≃ A5

N = 3
N = 4
N = 5

isomorphic
Modular symmetry            Discrete symmetry≃

← focus on in this work

Modular symmetry

ΓN



Modular symmetry
10D Superstring theory

4D theory (SUSY)             symmetry (modular)ΓN

Low scale phenomenology

Compactification

Expectation value of modulus τ 
breaks the symmetry 

SUSY breaking terms are invariant (covariant) under modular transformation 
in moduli-mediated SUSY breaking scenario 

We can consider modular invariant SMEFT  by supposing 
modular forms to be spurion

(μEW < μ < μNP)

 T. Kobayashi, H. Otsuka [2108.02700] 

4D our universe + 2D torus × 3

→ see Ajdin’s talk



A4 symmetry

 ,   ,  ,  eR μR τR (eL, μL, τL)

stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
symmetry in the lepton sector is independent of the A4 symmetry in the quark sector, i.e., AE

4
⌦AQ

4

symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
includes T 2

⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.

As examples, consider the semileptonic flavor changing neutral processes,

b ! s µ̄µ (s ēe) , b ! d µ̄µ (d ēe) , s ! d µ̄µ (d ēe) , (3.1)

which are caused by the flavor changing �F = 1 operator. Impose the modular A4 symmetry
on quarks and leptons, respectively, that is AE

4
⌦ AQ

4
. The triplet modular forms with weight 2

are denoted as Y (⌧q) and Y (⌧e), which are di↵erent for quarks and charged leptons because ⌧q
and ⌧e are di↵erent. In order to discuss relevant operators, we take a A4 modular model, which
leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.

QL (dc
R
, sc

R
, bc

R
) LL (ec

R
, µc

R
, ⌧ c

R
) Hd Y (⌧q), Y (⌧e)

SU(2) 2 1 2 1 2 1
A4 3 (1, 100, 10) 3 (1, 100, 10) 1 3
k 2 (0, 0, 0) 2 (0, 0, 0) 0 2

Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as

[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,

[ ĒR�ER ][ D̄R�DR ] : Qed ,

[ ĒL�EL][ D̄R�DR ] : Q`d , (3.2)

[ ĒR�ER ][ D̄L�DL ] : Qqe ,

[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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[ ĒR�ER ][ D̄R�DR ] : Qed ,
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Y(τe)

Non-Abelian discrete symmetry  group could be adjusted to family symmetry: 
      The minimum group containing triplet 
      Irreducible representations:  1,   1”,  1’,   3 

A4
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Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.
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doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
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Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as
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flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
symmetry in the lepton sector is independent of the A4 symmetry in the quark sector, i.e., AE
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symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
includes T 2

⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.

As examples, consider the semileptonic flavor changing neutral processes,

b ! s µ̄µ (s ēe) , b ! d µ̄µ (d ēe) , s ! d µ̄µ (d ēe) , (3.1)

which are caused by the flavor changing �F = 1 operator. Impose the modular A4 symmetry
on quarks and leptons, respectively, that is AE
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⌦ AQ

4
. The triplet modular forms with weight 2

are denoted as Y (⌧q) and Y (⌧e), which are di↵erent for quarks and charged leptons because ⌧q
and ⌧e are di↵erent. In order to discuss relevant operators, we take a A4 modular model, which
leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.
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where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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[ ĒR�ER ][ D̄L�DL ] : Qqe ,
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⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
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As examples, consider the semileptonic flavor changing neutral processes,
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leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
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flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
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[ ĒR�ER ][ D̄L�DL ] : Qqe ,
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Modular forms fi(τ) of weight k are the holomorphic functions of τ and transform as

fi(τ) −→ (cτ + d)kρ(γ)ijfj(τ) , γ ∈ Γ̄ , (6)

under the modular symmetry, where ρ(γ)ij is a unitary matrix under ΓN .
Under the modular transformation of Eq. (2), chiral superfields ψi (i denotes flavors) with weight

−k transform as [109],
ψi −→ (cτ + d)−kρ(γ)ijψj . (7)

We study global SUSY models. The superpotential which is built from matter fields and modular
forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given
modular forms, this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter
fields ψi with the modular weight −k is given simply by

1

[i(τ̄ − τ)]k
∑

i

|ψi|2, (8)

where the superfield and its scalar component are denoted by the same letter, and τ̄ = τ ∗ after
taking VEV of τ . The canonical form of the kinetic terms is obtained by changing the normalization
of parameters [26]. The general Kähler potential consistent with the modular symmetry possibly
contains additional terms [110]. However, we consider only the simplest form of the Kähler potential.

For Γ3 $ A4, the dimension of the linear space Mk(Γ(3)) of modular forms of weight k is
k + 1 [111–113], i.e., there are three linearly independent modular forms of the lowest non-trivial

weight 2, which form a triplet of the A4 group, Y (2)
3 (τ) = (Y1(τ), Y2(τ), Y3(τ))T . These modular

forms have been explicitly given [20] in the symmetric base of the A4 generators S and T for the
triplet representation as shown in the next subsection.

2.2 Modular forms

The holomorphic and anti-holomorphic modular forms with weight 2 compose the A4 triplet as:

Y (2)
3 (τ) =




Y1(τ)
Y2(τ)
Y3(τ)



 , Y (2)
3 (τ) ≡ Y (2)∗

3 (τ) =




Y ∗
1 (τ)

Y ∗
3 (τ)

Y ∗
2 (τ)



 . (9)

In the representation of the generators S and T for A4 triplet:

S =
1

3




−1 2 2
2 −1 2
2 2 −1



 , T =




1 0 0
0 ω 0
0 0 ω2



 , (10)

where ω = ei
2
3π, modular forms are given explicitly in terms of the Dedekind eta function η(τ) and

its derivative [20]:

Y1(τ) =
i

2π

(
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

)
,

Y2(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω2η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
, (11)

Y3(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2η

′((τ + 2)/3)

η((τ + 2)/3)

)
.

4

The holomorphic and anti-holomorphic modular forms with weight 2 compose 
the  triplet A4

Those are also expressed in the q expansions:



Y1(τ)
Y2(τ)
Y3(τ)



 =




1 + 12q + 36q2 + 12q3 + . . .
−6q1/3(1 + 7q + 8q2 + . . . )
−18q2/3(1 + 2q + 5q2 + . . . )



 . (12)

2.3 Representation of down-type quarks and charged leptons

Assign the left-handed down-type quarks to A4 triplets 3 and the three right-handed ones to A4

three different singlets. Then, those are expressed as follows:

DL =




dL
sL
bL



 , D̄L =




d̄L
b̄L
s̄L



 , (dc, sc, bc) = (1, 1′′, 1′) , (d̄c, s̄c, b̄c) = (1, 1′, 1′′) . (13)

It is noticed that quarks of second and third families are exchanged each other in d̄i. The weight of
DL and D̄L, −kI , are −2 and 2, respectively. On the other hand, −kI = 0 for Dc and D̄c.

The charged leptons are like down-type quarks as:

EL =




eL
µL

τL



 , ĒL =




ēL
τ̄L
µ̄L



 , (ec, µc, τ c) = (1, 1′′, 1′) , (ēc, τ̄ c, µ̄c) = (1, 1′′, 1′) . (14)

The weight of EL and ĒL, −kI , are also −2 and and 2, respectively. On the other hand, −kI = 0 for
Ec and Ēc.

Most of modular flavor models, which have been studied, are supersymmetric models. In the
following sections, we study models below the supersymmetry breaking scale. We assume that the
light modes are exactly the same as the SM with two doublet Higgs models.

3 SMEFT realization of four fermion operators in A4 mod-
ular symmetry

We study the modular A4 flavor symmetry. Although most of modular flavor models are supersym-
metric models, here we study the modular A4 flavor model below the supersymmetry breaking scale.
We assume that the light matter content is one of the SM. We write down 4-fermion operators as
well as dipole operators in terms of modular forms Y (τ). We also follow the Ansatz (1) that those
higher-dimensional operators are related with 3-point couplings, e.g. Yukawa couplings with Higgs
fields. Here, the higher-dimensional operators are supposed to be generated by integrating out heavy
superpartners, massive gauge bosons and stringy modes. We have already many modular flavor sym-
metric models, which lead to realistic quark and lepton mass matrices separately. However, when we
use the common value of the modulus τ for both quark and lepton sectors, the models are severely
constrained and very difficult to realize all the experimental values of quark and lepton masses and
their mixing angles at the same time. In order to cover many modular flavor models, we assume
that the modular A4 flavor symmetry in the lepton sector is independent of the A4 symmetry in the
quark sector, i.e., AE

4 ⊗ AQ
4 symmetry. They have two independent moduli, τq and τe for the quark

sector and the lepton sector, respectively. Such a setup can be realized through the compactification,
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 q = e2πiτ

Modular forms with higher weights k=4, 6 ... are constructed by them 

F. Feruglio [1706.08749] 

Yi (i=1,2,3) is a function of the modulus  τ

Once  is determined, the Yukawa is fixedτ

A4 modular symmetry



Fixed point for τ

  (  symmetry)τ = ω ST

  (  symmetry)τ = i S

ω = −1 + i 3
2

  (  symmetry)τ = i∞ T
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A4 modular  group ( �3  ).�
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4  Flavor mixing at nearby fixed points  

 principal valueτ

At exact fixed point, CP is not violated
→ need small deviation from these point :   (fixed point)  τ = +ϵ

phenomenoligiv all successful

 q = e2πiτ

phenomenologically  *(ϵ) ∼ 10−2

from the view point of the vacuum stability study

A4 modular symmetry
Modular symmetry is broken once τ is fixed

S : τ → − 1
τ

T : τ → τ + 1



Modular symmetry 

Phenomenological aspects 

   SMEFT with modular symmetry 

   Baryon/Lepton-number violating operator 

Summary

Outline

Review, see e.g. Peskin

Kobayashi, Otsuka, Tanimoto, KY 2204.12325 

Kobayashi, Nishimura,Otsuka, Tanimoto, KY 2207.14014

https://arxiv.org/abs/2204.12325
https://arxiv.org/abs/2207.14014


String Ansatz

String compactifications leads to 4-dim low energy field theories with the specific 
structure

 T. Kobayashi, H. Otsuka [2108.02700] 

Modular symmetry in SMEFT

Appendix

A SMEFT operators

Class 5–7: Fermion Bilinears

(L̄R)

5: ψ2H3+ h.c. 6: ψ2XH+ h.c.

("̄e) QeH (H†H)("̄perH) QeW ("̄pσµνer)τ IHW I
µν

QeB ("̄pσµνer)HBµν

(q̄u) QuH (H†H)(q̄purH̃) QuG (q̄pσµνTAur)H̃GA
µν

QuW (q̄pσµνur)τ IH̃W I
µν

QuB (q̄pσµνur)H̃Bµν

(q̄d) QdH (H†H)(q̄pdrH) QdG (q̄pσµνTAdr)HGA
µν

QdW (q̄pσµνdr)τ IHW I
µν

QdB (q̄pσµνdr)HBµν

7: ψ2H2D

(L̄L) (R̄R) (R̄R′)

lepton Q(1)
H" (H†i

←→
D µH)("̄pγµ"r) QHe (H†i

←→
D µH)(ēpγµer)

Q(3)
H" (H†i

←→
D I

µH)("̄pτ Iγµ"r)

quark Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr) QHu (H†i

←→
D µH)(ūpγµur) QHud + h.c. i(H̃†DµH)(ūpγµdr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτ Iγµqr) QHd (H†i
←→
D µH)(d̄pγµdr)

Class 8: Fermion Quadrilinears

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

semileptonic Q(1)
"q ("̄pγµ"r)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Q"u ("̄pγµ"r)(ūsγµut)

Q(3)
"q ("̄pγµτ I"r)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q"d ("̄pγµ"r)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

4-quark Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(8)

qd (q̄pγµTAqr)(d̄sγµTAdt)

4-lepton Q"" ("̄pγµ"r)("̄sγµ"t) Qee (ēpγµer)(ēsγµet) Q"e ("̄pγµ"r)(ēsγµet)

(L̄R)(R̄L) + h.c. (L̄R)(L̄R) + h.c.

semi-leptonic Q"edq ("̄jper)(d̄sqtj) Q(1)
"equ ("̄jper)εjk(q̄

k
sut)

4-quark Q(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q(3)
"equ ("̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 16: List of all fermionic SMEFT operators in the Warsaw basis [2]. The division in classes is
adopted from Ref. [3]. The p, r, s, t are flavor index, and j, k stand for SU(2) index. The operator
classes 1–4 without fermion fields are irrelevant in this paper, and not listed here.
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Standard model effective field theory (SMEFT)  μEW < μ < μNP

 : scalar or gaugeX

n-point couplings yn of matter fields are written by products of 3-point couplings

  e.g.   (4-point coupling)=(3-point coupling)×(3-point coupling)

Φi

Φj
X

Φk

Φℓ

y(3)
ijX y(3)

Xkℓ
 : 3-point coupling y(3)

ijX

μEW

μNP
coefficients of SMEFT operators can be written in terms of 3-point 
coupling

∝ y(3)
prXy(3)

Xst

String Ansatze.g.

y(4)
ijkℓ = ∑

X
y(3)

ijX y(3)
Xkℓ

 : fermionΦ

erℓp y(3)
prS

qp

qr
X

qs

qt

y(3)
prX y(3)

Xst



Strategy
 write down fermionic SMEFT operator so as to be invariant at   

 and modular symmetryA4

  (  symmetry)τ = ω ST
  (  symmetry)τ = i S

  (  symmetry)τ = i∞ T

 diagonalize the mass matrix and move to mass eigenstate basis

 pheno. study

In this talk

focus on  bilinear structure in lepton sector(L̄R)

focus on  caseτ = i

 expand modular forms  at three fixed point, and then include 
small deviation :  (fixed point)  

Y(τ)
τ = +ϵ

, Lepton flavor violation, EDM(g − 2)μ



not invariant both
  and modularA4

 :     A4 {1,1′ ′ ,1′ } ⊗ 3

 structure in the modular symmetry(L̄R)

[L̄RLL]
※   structure  is omittedγμ Γ
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stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
symmetry in the lepton sector is independent of the A4 symmetry in the quark sector, i.e., AE

4
⌦AQ

4

symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
includes T 2

⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.

As examples, consider the semileptonic flavor changing neutral processes,

b ! s µ̄µ (s ēe) , b ! d µ̄µ (d ēe) , s ! d µ̄µ (d ēe) , (3.1)

which are caused by the flavor changing �F = 1 operator. Impose the modular A4 symmetry
on quarks and leptons, respectively, that is AE

4
⌦ AQ

4
. The triplet modular forms with weight 2

are denoted as Y (⌧q) and Y (⌧e), which are di↵erent for quarks and charged leptons because ⌧q
and ⌧e are di↵erent. In order to discuss relevant operators, we take a A4 modular model, which
leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.

QL (dc
R
, sc

R
, bc

R
) LL (ec

R
, µc

R
, ⌧ c

R
) Hd Y (⌧q), Y (⌧e)

SU(2) 2 1 2 1 2 1
A4 3 (1, 100, 10) 3 (1, 100, 10) 1 3
k 2 (0, 0, 0) 2 (0, 0, 0) 0 2

Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as

[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,

[ ĒR�ER ][ D̄R�DR ] : Qed ,

[ ĒL�EL][ D̄R�DR ] : Q`d , (3.2)

[ ĒR�ER ][ D̄L�DL ] : Qqe ,

[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as
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`q
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[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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 :              kI 0 −2

Y(τe)



not invariant both
  and modularA4

 :     A4 {1,1′ ′ ,1′ } ⊗ 3
 :              kI 0 −2                  0 2 −2

invariant

 structure in the modular symmetry(L̄R)

[L̄RLL] [L̄RY(τq)LL]
 modular form

 {1,1′ ′ ,1′ } ⊗ 3 ⊗ 3

※   structure  is omittedγμ Γ
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  and modularA4
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 modular form
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stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
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symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
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⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.
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doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.
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flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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B Unitary transformation of S and ST and Mass matrix

The mass matrix is transformed by the unitary transformation, which transforms the generator S
and ST . We discuss details at the fixed points τ = i and τ = ω.

B.1 Diagonal base of S for A4 triplet

The generators of A4 group for the triplet are:

S =
1

3




−1 2 2
2 −1 2
2 2 −1



 , T =




1 0 0
0 ω 0
0 0 ω2



 , (115)

where ω = ei
2
3π for a triplet. The eigenvalues of S is (1 ,−1 ,−1). This is the diagonal base of T .

In order to present the mass matrices in the diagonal base of S, we move to the diagonal base of
S as follows:

US1 S U †
S1 =




−1 0 0
0 1 0
0 0 −1



 , US2 S U †
S2 =




1 0 0
0 −1 0
0 0 −1



 , US3 S U †
S3 =




−1 0 0
0 −1 0
0 0 1



 , (116)

where

USi ≡ Pi





2√
6
− 1√

6
− 1√

6
1√
3

1√
3

1√
3

0 − 1√
2

1√
2



 , P1 =




1 0 0
0 1 0
0 0 1



 , P2 =




0 1 0
1 0 0
0 0 1



 , P3 =




1 0 0
0 0 1
0 1 0



 . (117)

Then, the generator T is not anymore diagonal. However, the eigenvalue −1 of S is degenerated,
there is a freedom of the rotation between corresponding rows and between columns.

As seen in subsection B.3, the Dirac mass matrix MRL is transformed as:

M̂RL = MRLU
†
Si , (118)

If there is a residual symmetry of A4 in the Dirac mass matrix, ZS
2 = {I, S}, which is realized at the

fixed point τ = i as presented in Eq. 23, the generator S commutes with M̂ †
RLM̂RL,

[
M̂ †

RLM̂RL , S
]
= 0 . (119)

Therefore, the mass matrix could be diagonal in the diagonal base of S.

B.2 Diagonal bases of ST and T for A4 triplet

We can move ST to the diagonal base by the six-type unitary transformations VST as follows:

USTi ST U †
STi = Pi




ω2 0 0
0 ω 0
0 0 1



P T
i , (120)
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The generators of A4 triplet

Y(τe)



 structure in the modular symmetry(L̄R)

and leptons have been discussed intensively in these years. Phenomenological studies of the lepton
flavors have been done based on A4 [25–27], S4 [28–30] and A5 [31]. A clear prediction of the neutrino
mixing angles and the Dirac CP phase was given in the simple lepton mass matrices with the A4

modular symmetry [26]. The Double Covering groups T′ [32, 33] and S ′
4 [34, 35] were also realized

in the modular symmetry. Furthermore, phenomenological studies have been developed in many
works [36–86].

Superstring theory is a promising candidate for the unified theory including gravity. Various
string compactifications lead to four-dimensional low energy field theories with the specific structure,
where 4-point couplings y(4)ijk! of matter fields can be written by a product of 3-point couplings y(3)ijm

of matter fields,
y(4)ijk! =

∑

m

y(3)ijmy
(3)
mk!, (1)

up to an overall factor, where the modes corresponding to m may be light or heavy modes. Fur-
thermore, n-point couplings y(n) can also be written by products of 3-point couplings y(3), i.e.,
y(n) = (y(3))n−2. Thus, the symmetries in 3-point couplings are still symmetries even for higher-
dimensional operators, and the flavor structures of higher-dimensional operators are controlled by
3-point couplings. This structure in the string-derived low-energy effective field theory meets the
MFV hypothesis [90]. Note that the string EFTs satisfy the relation (1) at the compactification
scale or the string scale, but it holds at the low-energy scale. This is because new operators appear-
ing through the vacuum expectation value (VEV) of scalar fields and integrating out heavy states
keep the relation (1).

In addition, these couplings in the string-derived effective field theory depend on moduli, which
represent geometrical characters of string compact spaces such as size and shape. When we ignore the
dynamic of moduli fields, these moduli-dependent couplings behave as spurions. Then, the geomet-
rical symmetry, under which moduli transform non-trivially, would be important from the viewpoint
of the MFV, although Yukawa spurions transform (3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the
U(3)5 = U(3)L⊗U(3)Q⊗U(3)E⊗U(3)U ⊗U(3)D flavor symmetric MFV scenario. The U(2)5 flavor
symmetric scenario can also be realized in string models due to the fact that matter Yukawa couplings
have rank 1 at the leading order [91]. The modular symmetry is the geometrical symmetry, which
changes the basis of cycles of the torus T 2 as well as the orbifold T 2/Z2.1 Moreover, zero-modes trans-
form non-trivially under the modular symmetry. (See, e.g., for heterotic string theory on orbifolds
Ref. [93] and for magnetized brane models Ref. [94]). That is, the modular symmetry corresponds to
the flavor symmetry in the low-energy effective field theory. Yukawa couplings as well as other cou-
plings transform non-trivially under the modular symmetry, because these couplings depend on the
modulus. Calabi-Yau threefolds have many moduli, and their geometrical symmetries are symplectic
modular symmetries [95, 96]. Their phenomenological implications were studied in Refs. [97, 98].
Hence, these observations strongly support that flavor structures of higher-dimensional operators as
well as Yukawa couplings in the string EFTs are determined by the modular flavor symmetry.

A drawback of the MFV hypothesis is that it does not allow us to define a clear power-counting
in the SMEFT. This is because one of the breaking term, namely Yukawa coupling Yt, is large. It is
therefore not obvious why one should not consider more powers of Yt in the counting of independent
operators. On the other hand, it defines a clear power counting in the modular symmetry due to the
modular weights.

1The possible discrete modular symmetries on higher-dimensional toroidal orbifolds were classified in the context
of Type IIB string theory [92].
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Same structure with mass matrix : 

c = 1

if virtual mode is only higgs

→ no flavor changing like μ → e

Φi

Φj
h

y(3)
ijm  Yukawa∝ αe = cαe(m), βe = cβe(m), γe = cγe(m)
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value of Eq.(A.2), the real part of the Wilson coe�cient of the muon C
0
e�
µµ

has been obtained as

seen in Eq.(A.4) [19]. Now, we can estimate the magnitude of the electron (g � 2)e anomaly by

using the relation in Eq.(4.1) as:

�ae =
4me

e

v
p
2

1

⇤2
Re [C 0

e�
ee

] ' 5.8⇥ 10�14
, (4.2)

where ⇤ denotes a certain mass scale of NP. It is easily seen that �ae and �aµ are proportional

to the lepton masses squared. This result is agreement with the naive scaling �a` / m
2
`
[161].

In the electron anomalous magnetic moment, the experiments [162] give

a
Exp
e

= 1159 652 180.73(28)⇥ 10�12
, (4.3)

while the SM prediction crucially depends on the input value for the fine-structure constant ↵.

Two latest determination [163,164] based on Cesium and Rubidium atomic recoils di↵er by more

than 5�. Those observations lead to the di↵erence from the SM prediction

�a
Cs

e
= a

Exp
e

� a
SM,CS
e

= (�8.8± 3.6)⇥ 10�13
,

�a
Rb

e
= a

Exp
e

� a
SM,Rb
e

= (4.8± 3.0)⇥ 10�13
. (4.4)

Our predicted value is small of one order compared with the present observed one at present. We

wait for the precise observation of the fine structure constant to test our framework.

4.2 (g � 2)µ and µ ! e�

The NP in the LFV process is severely constrained by the experimental bound B(µ+
! e

+
�) <

4.2 ⇥ 10�13 in the MEG experiment [165]. We can discuss the correlation between the anomaly

of the muon (g � 2)µ and the LFV process µ ! e� by using the Wilson coe�cients in Eqs.(3.18)

and (3.19). The ratio is given as:

������

C
0
e�
eµ

C 0
e�
µµ

������
=

�̃e

↵̃e

�����1�
↵̃e

↵̃e(m)

�̃e(m)

�̃e

����� . (4.5)

Let us introduce small parameters �↵, �� and �� as follows:

�̃e

�̃e(m)

=
�̃e(m) + c�

�̃e(m)

= 1 +
c�

�̃e(m)

⌘ 1 + �� ,

↵̃e

↵̃e(m)
=

↵̃e(m) + c↵

↵̃e(m)
= 1 +

c↵

↵̃e(m)
⌘ 1 + �↵ ,

�̃e

�̃e(m)
=

�̃e(m) + c�

�̃e(m)
= 1 +

c�

�̃e(m)
⌘ 1 + �� , (4.6)
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δ’s are very small 
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, Lepton flavor violation, EDM(g − 2)μ

Strategy
 write down fermionic SMEFT operator so as to be invariant at   

 and modular symmetryA4

  (  symmetry)τ = ω ST
  (  symmetry)τ = i S

  (  symmetry)τ = i∞ T

 diagonalize the mass matrix and move to mass eigenstate basis

 pheno. study

In this talk

focus on  bilinear structure in lepton sector(L̄R)

focus on  caseτ = i

 expand modular forms  at three fixed point, and then include 
small deviation :  (fixed point)  

Y(τ)
τ = +ϵ



at  (  symmetry); Diagonalizationτ = i S

29

Mass matrix of charged leptons at nearby τ= i

Results of  structure in interaction basis(L̄R)
R̄L

L̄R

s̄R�bL
s̄L�bR

d̄R�bL
d̄L�bR

d̄R�sL
d̄L�sR

µ̄R�⌧L
µ̄L�⌧R

ēR�⌧L
ēL�⌧R

ēR�µL

ēL�µR

ēR�eL
ēL�eR

µ̄R�µL

µ̄L�µR

Coe↵.
�d Y3(⌧q)
�d Y

⇤
2
(⌧q)

↵d Y2(⌧q)
�d Y

⇤
3
(⌧q)

↵d Y3(⌧q)
�̃d Y

⇤
2
(⌧q)

�e Y3(⌧e)
�e Y

⇤
2
(⌧e)

↵e Y2(⌧e)
�e Y

⇤
3
(⌧e)

↵e Y3(⌧e)
�e Y

⇤
2
(⌧e)

↵e Y1(⌧e)
↵e Y

⇤
1
(⌧e)

�e Y1(⌧e)
�e Y

⇤
1
(⌧e)

Table 2: A4 flavor coe�cients of the bilinear operators of down-type quarks and charged leptons.

Therefore, the flavor structure of the these operators is predicted if the modulus ⌧q,e is fixed. It
is noticed that above operators are given in the flavor base. In order to move the mass eigenstate
of the left-handed quarks and leptons, we must fix the modulus ⌧q,e. The value of ⌧q,e depends
on models, for example, Eqs. (B.1) and (B.2). The interesting value of ⌧q,e is fixed points of the
modulus in the fundamental domain of SL(2,Z) since the moduli stabilization is realized in a
controlled way at nearby fixed points [123, 124]. Furthermore, the fixed points are statistically
favored in the string landscape [125]. We discuss the phenomenology at nearby fixed points in the
next subsection.

4.2 Diagonal matrix M †

E
ME and M †

q
Mq at fixed points

Residual symmetries arise whenever the VEV of the modulus ⌧ breaks the modular group � only
partially. Here and in what follows, we denote ⌧ = ⌧q,e unless we specify it. Fixed points of
modulus are the case. There are only 2 inequivalent finite points in the fundamental domain of �,
namely, ⌧ = i and ⌧ = ! = �1/2+ i

p
3/2. The first point is invariant under the S transformation

⌧ = �1/⌧ . In the case of A4 symmetry, the subgroup ZS

2
= {I, S} is preserved at ⌧ = i. The

second point is the left cusp in the fundamental domain of the modular group, which is invariant
under the ST transformation ⌧ = �1/(⌧+1). Indeed, ZST

3
= {I, ST, (ST )2} is one of subgroups of

A4 group. The right cusp at ⌧ = �!2 = 1/2+ i
p
3/2 is related to ⌧ = ! by the T transformation.

There is also infinite point ⌧ = i1, in which the subgroup ZT

3
= {I, T, T 2

} of A4 is preserved. We
summarize at three cases of the transformation:

S invariant : ⌧ = i , ST invariant : ⌧ = ! , T invariant : ⌧ = i1 . (4.9)

If a residual symmetry of S and T in A4 is preserved in mass matrices of leptons and quarks,
we have commutation relations between the mass matrices and the generator G ⌘ S, T, ST as:

[M †
RL

MRL, G] = 0 , (4.10)

where MRL denotes the mass matrix of charged leptons and quarks, ME and Mq (q = u, d).
Then the mass matrices M †

E
ME and M †

q
Mq could be diagonal in the diagonal basis of G at the

fixed points. Therefore, the hierarchical structures of flavor mixing are easily realized near those
fixed points.
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R̄L
L̄R

s̄RΓbL
s̄LΓbR

d̄RΓbL
d̄LΓbR

d̄RΓsL
d̄LΓsR

µ̄RΓτL
µ̄LΓτR

ēRΓτL
ēLΓτR

ēRΓµL
ēLΓµR

ēRΓeL
ēLΓeR

µ̄RΓµL
µ̄LΓµR

Coeff.
βd Y3(τq)
γd Y ∗

2 (τq)
αd Y2(τq)
γd Y ∗

3 (τq)
αd Y3(τq)
β̃d Y ∗

2 (τq)
βe Y3(τe)
γe Y ∗

2 (τe)
αe Y2(τe)
γe Y ∗

3 (τe)
αe Y3(τe)
βe Y ∗

2 (τe)
αe Y1(τe)
αe Y ∗

1 (τe)
βe Y1(τe)
βe Y ∗

1 (τe)

Table 2: A4 flavor coefficients of the bilinear operators of down-type quarks and charged leptons.

Therefore, the flavor structure of the these operators is predicted if the modulus τq,e is fixed. It
is noticed that above operators are given in the flavor base. In order to move the mass eigenstate
of the left-handed quarks and leptons, we must fix the modulus τq,e. The value of τq,e depends
on models, for example, Eqs. (B.1) and (B.2). The interesting value of τq,e is fixed points of the
modulus in the fundamental domain of SL(2,Z) since the moduli stabilization is realized in a
controlled way at nearby fixed points [123, 124]. Furthermore, the fixed points are statistically
favored in the string landscape [125]. We discuss the phenomenology at nearby fixed points in the
next subsection.

4.2 Diagonal matrix M †
EME and M †

qMq at fixed points

Residual symmetries arise whenever the VEV of the modulus τ breaks the modular group Γ only
partially. Here and in what follows, we denote τ = τq,e unless we specify it. Fixed points of
modulus are the case. There are only 2 inequivalent finite points in the fundamental domain of Γ,
namely, τ = i and τ = ω = −1/2+ i

√
3/2. The first point is invariant under the S transformation

τ = −1/τ . In the case of A4 symmetry, the subgroup ZS
2 = {I, S} is preserved at τ = i. The

second point is the left cusp in the fundamental domain of the modular group, which is invariant
under the ST transformation τ = −1/(τ+1). Indeed, ZST

3 = {I, ST, (ST )2} is one of subgroups of
A4 group. The right cusp at τ = −ω2 = 1/2+ i

√
3/2 is related to τ = ω by the T transformation.

There is also infinite point τ = i∞, in which the subgroup ZT
3 = {I, T, T 2} of A4 is preserved. We

summarize at three cases of the transformation:

S invariant : τ = i , ST invariant : τ = ω , T invariant : τ = i∞ . (4.9)

If a residual symmetry of S and T in A4 is preserved in mass matrices of leptons and quarks,
we have commutation relations between the mass matrices and the generator G ≡ S, T, ST as:

[M †
RLMRL, G] = 0 , (4.10)

where MRL denotes the mass matrix of charged leptons and quarks, ME and Mq (q = u, d).
Then the mass matrices M †

EME and M †
qMq could be diagonal in the diagonal basis of G at the

fixed points. Therefore, the hierarchical structures of flavor mixing are easily realized near those
fixed points.
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Insert holomorphic modular forms of weight 2 at τ = i

If a residual symmetry of S and T in A4 is preserved in mass matrices of leptons and quarks, we
have commutation relations between the mass matrices and the generator G ≡ S, T, ST as:

[M †
RLMRL, G] = 0 , (24)

where MRL denotes the mass matrix of charged leptons and quarks, ME and Mq (q = u, d).
Then the mass matrices M †

EME and M †
qMq could be diagonal in the diagonal basis of G at the

fixed points. Therefore, the hierarchical structures of flavor mixing are easily realized near those
fixed points.

4.2.1 Mass matrix and LR and RL operators at the fixed point τ = i

At τ = i, holomorphic and anti-holomorphic modular forms of weight 2 are given as:

Yq(τ = i) = Y1(i)




1

1−
√
3

−2 +
√
3



 , Y ∗
q (τ = i) = Y1(i)




1

−2 +
√
3

1−
√
3



 .

Ye(τ = i) = Y1(i)




1

1−
√
3

−2 +
√
3



 , Ye(τ = i) = Y1(i)




1

−2 +
√
3

1−
√
3



 . (25)

The left handed quarks and charged lepton fields are transformed as:

DL → DS
L ≡ US DL , D̄L → D̄S

L ≡ D̄LU
†
S ,

EL → ES
L ≡ US EL , ĒL → ĒS

L ≡ ĒL U
†
S , (26)

where the unitary matrix US is

US =
1

2
√
3




2 2 2√
3 + 1 −2

√
3− 1√

3− 1 −2
√
3 + 1



 , (27)

(see Eq. (117) of Appendix B.1) .
On the other hand, the right handed quarks and charged lepton fields are unchanged since ther

are A4 singlets.
Suppose that the down-type quark mass matrix is given by the weight 2 modular forms Yq(τ).

Then, it is expressed as

Md = vd




αd 0 0
0 βd 0
0 0 γd








Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1





RL

, (28)

where the VEV of the Higgs field Hd is denoted by vd. Parameters αd, βd, γd can be taken to be real
constant. At τ = i, under the transformation of Eq. (26) it becomes (see in Appendix C)

Md =
1

2




0 3(

√
3− 1)α̃d −(3−

√
3)α̃d

0 −3(
√
3− 1)β̃d −(3−

√
3)β̃d

0 0 2(3−
√
3)γ̃d





RL

,

M †
dMd =

1

2




0 0 0
0 9(2−

√
3)(α̃2

d + β̃2
d) 3(3− 2

√
3)(α̃2

d − β̃2
d)

0 3(3− 2
√
3)(α̃2

d − β̃2
d) 3(2−

√
3)(α̃2

d + β̃2
d + 4γ̃2d)





LL

, (29)
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Transrate

The flavor structure of the FC bilinear operators at τ = i
, then the left-handed fields are not yet the mass eigenstate, but close to it τ = i + ϵ

using approximate behaviors 

where α̃d = (6− 3
√
3)vdY1(i)2αd, β̃d = (6− 3

√
3)vdY1(i)2βd and γ̃d = (6− 3

√
3)vdY1(i)2γd and γ̃d is

supposed to be much larger than α̃d and β̃d.
Since two eigenvalues of S are degenerate such as (1,−1,−1), there is still a freedom of the

2–3 family rotation. Therefore, M †
dMd could be diagonal after the small 2–3 family rotation of

O(α̃2
d/̃γ

2
d , β̃

2
d/γ̃

2
d). The charged lepton mass matrix is the same one in Eq. (29) by replacing the

subscript d with e.
Let us the relevant semileptonic operators in the diagonal base of the genetator S. The A4 triplet

left-handed fields are transformed as in Eq. (26). Putting the modular forms of Eq. (25) into the
coefficients of Table 2, we can predict the flavor structure of the FC bilinear operators in the new
base of the transformation in Eq. (26). Those coefficients are listed in Table 3 at τ = i. The left-
handed fields are not yet the mass eigenstate, but close to it. We should move the left-handed fields
to the mass eigenstate by the small rotation in the flavor space.

4.2.2 In the mass eigenstate at nearby τ = i

In order to get the observed fermion masses and CKM elements, the modulus τ is deviated from
the fixed points τ = i. Indeed, the successfull quark mass matrices have been obtained at nearby
τ = i [47]. By using a small deimensionless parameter ε, we put the modulus value as τ = i + ε.
Then, approximate behaviors of the ratios of modular forms are [71]:

Y2(τ)

Y1(τ)
# (1 + ε1) (1−

√
3) ,

Y3(τ)

Y1(τ)
# (1 + ε2) (−2 +

√
3) , ε1 =

1

2
ε2 # 2.05 i ε . (30)

These approximate forms are agreement with exact numerical values within 0.1% for |ε| ≤ 0.05.
Since the modulus τ is different ones for the quark and lepton sectors each other, we use the notation
εq1 for the quark sector and ε!1 for the lepton sector hereafter.

Then, the quark mass matrix is diagonalized by the transformation which is shown in Appendix
C:

DL → Dm
L ≡ UT

SmdU
T
12(90

◦)US DL , D̄L → D̄m
L ≡ D̄L U

†
SU12(90

◦)USmd ,

EL → Em
L ≡ UT

SmeU
T
12(90

◦)US EL , ĒL → Ēm
L ≡ ĒL U

†
SU12(90

◦)USme , (31)

where

USmd #




1 sd12e

iηd 0
−sd12e−iηd 1 sd23
sd12s

d
23 −sd23 1



 #




1 O(εq1) 0

O(εq1) 1 O(εq1)
O(εq 21 ) O(εq1) 1



 , (32)

on the other hand,

USme #




1 se12e

iηe 0
−se12e−iηe 1 se23
se12s

e
23e

−iηe −se23 1



 #




1 O(εe1) 0

O(εe1) 1 O(εe1)
O(εe 21 ) O(εe1) 1



 , (33)

Details are presented in Appendix C.
Therefore, in the mass eigenstate, the coefficients of quark bilinear operators in Eq. (22) and Table

2 are given in terms of mixing angles sd12, s
d
23 and εq1 at τq = i+ εq1 as seen in Table 3.
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[2009.14242]  

These approximate forms are agreement with exact numerical values within for 0.1 % |ϵ | ≤ 0.05

Mass eigenstate basis at  and τ = i τ = i + ϵ
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Best fit values of parameters in A4 modular invariant model to realize lepton mass 
matrix, neutrino data  

Okada and Tanimoto[2012.01688]  

at  (  symmetry); Diagonalizationτ = i S
Mass eigenstate basis at  and τ = i τ = i + ϵ

The mixing matrices are parametrized as:

ULme ' P
⇤
e

0

@
1 s

e

L12 s
e

L13

�s
e

L12 1 s
e

L23

s
e

L12s
e

L23 � s
e

L13 �s
e

L23 1

1

A , URme '

0

@
1 s

e

R12 s
e

R13

�s
e

R12 1 s
e

R23

s
e

R12s
e

R23 � s
e

R13 �s
e

R23 1

1

A ,

(3.14)

where the phase matrix Pe is

Pe =

0

@
e
i⌘e 0 0

0 1 0

0 0 1

1

A , ⌘e = arg ✏1 . (3.15)

The mixing angles are given as seen in Appendix D:

s
e

L12 ' �|✏
⇤
1| , s

e

L23 ' �

p
3

4

↵̃
2
e(m)

�̃
2
e(m)

, s
e

L13 ' �

p
3

3
|✏

⇤
1| ,

s
e

R12 ' �
�̃e(m)

↵̃e(m)
, s

e

R23 ' �
1

2

↵̃e(m)

�̃e(m)
, s

e

R13 ' �
1

2

�̃e(m)

�̃e(m)
, (3.16)

where ↵̃e(m) = (6� 3
p
3)Y1(i)↵e(m), �̃e(m) = (6� 3

p
3)Y1(i)�e(m) and �̃e(m) = (6� 3

p
3)Y1(i)�e(m).

Indeed, the numerical fit was succeeded in the case of �̃2
e(m) � ↵̃

2
e(m) � �̃

2
e(m) [61]. In the mass

eigenstate, the A4 flavor coe�cients of charged lepton bilinear operators are given in terms of

mixing angles se12, s
e

13 and ✏1 at ⌧ = i+ ✏ in Table 2 5.

µ̄R�⌧L
µ̄L�⌧R

ēR�⌧L
ēL�⌧R

ēR�µL

ēL�µRp
3
2 (↵̃e + 2seR23�̃e)

(
p
3se23L + se12L|✏

⇤
1|)�̃e �

3
2s

e
R23↵̃e

p
3
2 (�̃e � se12R↵̃e + 2(seR13 � seR12s

e
R23)�̃e)

(
p
3se13L + |✏⇤1|)�̃e

3
2 (�̃e + se12R↵̃e)

1
2 (3s

e
12L �

p
3se13L + 2|✏⇤1|)↵̃e

Table 2: A4 flavor coe�cients of the FC lepton bilinear operators at ⌧ = i + ✏, where O(|✏|2)

is neglected because the modular forms are expanded in O(|✏|), and ↵̃e = (6 � 3
p
3)Y1(i)↵e,

�̃e = (6 � 3
p
3)Y1(i)�e, �̃e = (6 � 3

p
3)Y1(i)�e. A common overall factor (1 �

p
3) is omitted in

the coe�cients.

It is easily noticed that coe�cients of µ̄L�⌧R, ēL�⌧R and ēL�µR in Table 2 are much suppressed

in spite of ↵e 6= ↵e(m), �e 6= �e(m), �e 6= �e(m), by inputting mixing angles of Eq.(3.16) into them.

Indeed, we find that those coe�cients are O(✏1↵̃2
e
/�̃e) for µ̄L�⌧R and ēL�⌧R while O(�̃2

e
/↵̃e) for

ēL�µR after calculations of the next-to-leading terms. Numerical values of these parameter are

given at the best fit point as follows [61]:

⌧ = �0.080 + 1.007 i , |✏1| = 0.165 ,
↵̃e(m)

�̃e(m)
'

↵̃e

�̃e
= 6.82⇥ 10�2

,
�̃e(m)

↵̃e(m)
'

�̃e

↵̃e

= 1.50⇥ 10�2
.

(3.17)

5
These results are di↵erent from ones in the previous our works [30]. The previous result was obtained in a flavor

basis of leptons where the right-handed leptons are not rotated. However, the previous results are also justified

approximately due to the di↵erent condition from Eq.(3.10), such as ↵e � ↵e(m) ⇠ ↵e, etc..
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→ predict flavor observables

The mixing matrices are parametrized as:

ULme ' P
⇤
e

0

@
1 s

e

L12 s
e

L13

�s
e

L12 1 s
e

L23

s
e

L12s
e

L23 � s
e

L13 �s
e

L23 1

1

A , URme '

0

@
1 s

e

R12 s
e

R13

�s
e

R12 1 s
e

R23

s
e

R12s
e

R23 � s
e

R13 �s
e

R23 1

1

A ,

(3.14)

where the phase matrix Pe is

Pe =

0

@
e
i⌘e 0 0

0 1 0

0 0 1

1

A , ⌘e = arg ✏1 . (3.15)

The mixing angles are given as seen in Appendix D:

s
e

L12 ' �|✏
⇤
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e

L23 ' �

p
3

4

↵̃
2
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�̃
2
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e

L13 ' �

p
3

3
|✏

⇤
1| ,

s
e

R12 ' �
�̃e(m)

↵̃e(m)
, s

e

R23 ' �
1

2

↵̃e(m)

�̃e(m)
, s

e

R13 ' �
1

2

�̃e(m)

�̃e(m)
, (3.16)

where ↵̃e(m) = (6� 3
p
3)Y1(i)↵e(m), �̃e(m) = (6� 3

p
3)Y1(i)�e(m) and �̃e(m) = (6� 3

p
3)Y1(i)�e(m).

Indeed, the numerical fit was succeeded in the case of �̃2
e(m) � ↵̃

2
e(m) � �̃

2
e(m) [61]. In the mass

eigenstate, the A4 flavor coe�cients of charged lepton bilinear operators are given in terms of

mixing angles se12, s
e

13 and ✏1 at ⌧ = i+ ✏ in Table 2 5.

µ̄R�⌧L
µ̄L�⌧R

ēR�⌧L
ēL�⌧R

ēR�µL

ēL�µRp
3
2 (↵̃e + 2seR23�̃e)

(
p
3se23L + se12L|✏

⇤
1|)�̃e �

3
2s

e
R23↵̃e

p
3
2 (�̃e � se12R↵̃e + 2(seR13 � seR12s

e
R23)�̃e)

(
p
3se13L + |✏⇤1|)�̃e

3
2 (�̃e + se12R↵̃e)

1
2 (3s

e
12L �

p
3se13L + 2|✏⇤1|)↵̃e

Table 2: A4 flavor coe�cients of the FC lepton bilinear operators at ⌧ = i + ✏, where O(|✏|2)

is neglected because the modular forms are expanded in O(|✏|), and ↵̃e = (6 � 3
p
3)Y1(i)↵e,

�̃e = (6 � 3
p
3)Y1(i)�e, �̃e = (6 � 3

p
3)Y1(i)�e. A common overall factor (1 �

p
3) is omitted in

the coe�cients.

It is easily noticed that coe�cients of µ̄L�⌧R, ēL�⌧R and ēL�µR in Table 2 are much suppressed

in spite of ↵e 6= ↵e(m), �e 6= �e(m), �e 6= �e(m), by inputting mixing angles of Eq.(3.16) into them.

Indeed, we find that those coe�cients are O(✏1↵̃2
e
/�̃e) for µ̄L�⌧R and ēL�⌧R while O(�̃2

e
/↵̃e) for

ēL�µR after calculations of the next-to-leading terms. Numerical values of these parameter are

given at the best fit point as follows [61]:

⌧ = �0.080 + 1.007 i , |✏1| = 0.165 ,
↵̃e(m)

�̃e(m)
'

↵̃e

�̃e
= 6.82⇥ 10�2

,
�̃e(m)

↵̃e(m)
'

�̃e

↵̃e

= 1.50⇥ 10�2
.

(3.17)

5
These results are di↵erent from ones in the previous our works [30]. The previous result was obtained in a flavor

basis of leptons where the right-handed leptons are not rotated. However, the previous results are also justified

approximately due to the di↵erent condition from Eq.(3.10), such as ↵e � ↵e(m) ⇠ ↵e, etc..
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The mixing matrices are parametrized as:
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L13
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L12 1 s
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L23
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L23 1
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1 s

e

R12 s
e

R13

�s
e

R12 1 s
e

R23

s
e

R12s
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R23 � s
e

R13 �s
e

R23 1

1

A ,

(3.14)

where the phase matrix Pe is

Pe =
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The mixing angles are given as seen in Appendix D:
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e(m) [61]. In the mass

eigenstate, the A4 flavor coe�cients of charged lepton bilinear operators are given in terms of

mixing angles se12, s
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13 and ✏1 at ⌧ = i+ ✏ in Table 2 5.
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Lepton dipole operator

ER EL

Fμν

NP

is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].

3

where EL and ER denote three flavors of left-handed and right-handed leptons, respectively, and v

denotes the vacuum expectation value (VEV) of the Higgs field H. Here the prime of the Wilson

coe�cient indicates the flavor basis corresponding to the mass-eigenstate basis of charged leptons.

The relevant e↵ective Lagrangian is written as:

Ldipole =
1

⇤2

✓
C
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+ C
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Oe�
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◆
, (3.2)

where ⇤ is a certain mass scale of NP in the e↵ective theory.

In the following discussions, we take the A4 modular symmetry for leptons. Most of modular

flavor models are supersymmetric models. Since we study the model below the supersymmetry

breaking scale, the light modes are exactly the same as the SM with two doublet Higgs models.

Note that the modular symmetry is still a symmetry of the low-energy e↵ective action below

the supersymmetry breaking scale, as confirmed in the moduli-mediated supersymmetry breaking

scenario.

3.1 Representation of charged leptons in A4 modular invariant model

We take a simple A4 modular-invariant flavor model of leptons, which is successful in reproducing

neutrino masses and mixing angles, as shown explicitly in Appendix C. In the model, the left-

handed charged leptons compose a A4 triplet 3 and the three right-handed ones are A4 three

di↵erent singlets. Then, those are expressed as follows:

EL =

0

@
eL

µL

⌧L

1

A , ĒL =
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It is noticed that leptons of second and third families are exchanged each other in ĒL. As seen

in the Table of Appendix C, both EL and ĒL have the same modular weight, �k = �2. On the

other hand, k = 0 for ec
R
, eR, etc..

The holomorphic and anti-holomorphic modular forms of weight 2 compose the A4 triplet:
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where modular forms are given explicitly in Appendix B.2.

3.2 [ ĒR�EL ] and [ ĒL�ER ] bilinears in the flavor space
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, τ → μγ τ → 3μ

τ → eγ
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Lepton flavor violation
,  ,  μ → eγ μ → 3e μN → eN

 tau , ,  EDM  (g − 2)τ dτ

Im

predict dµ

|dµ/e| . 10�26 cm (3.26)

electron (g � 2)e

1

⇤2
Re [C 0

e�
µµ

] ⇡ 1.0⇥ 10�5 TeV�2 . (3.27)

use U(2) relation, we get
1

⇤2
Re [C 0

e�
ee

] ⇡ 5⇥ 10�8TeV�2 (3.28)

�ae = �aµ
me

mµ

Re C 0
e�
ee

Re C 0
e�
µµ

⇡ �aµ ⇥
✓
me

mµ

◆2

⇠ 5.7⇥ 10�14 (3.29)

⌧ ! µ�

������

C 0
e�

µ⌧(⌧µ)

C 0
e�
⌧⌧

������
< 1.6⇥ 10�2 ⇥

������

y⌧ C 0
e�
µµ

yµ C 0
e�
⌧⌧

������
(3.30)

natural expectation
|C 0

e�
⌧⌧

|/y⌧ ⇠ |C 0
e�
µµ

|/yµ (3.31)

|✏L23| , |✏R23| < 1.6⇥ 10�2 ⇥

������

y⌧ C 0
e�
22

yµ C 0
e�
33

������
(3.32)

Modular

������

C 0
e�
ee

C 0
e�
µµ

������
= 2

�̃e

↵̃e

|✏⇤1| ⇡
me

mµ

' 4.9⇥ 10�3 (3.33)
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we have obtained de/e ' 2 ⇥ 10�16⇤2 sin�, where ⇤ denotes a certain mass scale, and � is an

unknown phase of O(1) in the Wilson coe�cient. Then, de/e is expected to be 2 ⇥ 10�14 (5 ⇥

10�13) TeV�1 for ⇤ = 10 (50)TeV. These are consistent with the present upper bound de/e <

5.6⇥ 10�13 TeV�1.

Thus, our Ansatz in the SMEFT with the modular symmetry of flavors is powerful to study

the leptonic phenomena of flavors comprehensively.
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Appendix

A Experimental constraints on the dipole operators

We summarize briefly the experimental constraints on the dipole operators given by Ref. [19].

Below the scale of electroweak symmetry breaking, the leptonic dipole operators are given as:
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v
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where {r, s} are flavor indices e, µ, ⌧ and Fµ⌫ is the electromagnetic field strength tensor. The

corresponding Wilson coe�cient is denoted by C
0
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in the mass basis of leptons.

The combined result from the E989 experiment at FNAL [1] and the E821 experiment at

BNL [2] on the aµ = (g � 2)µ/2, together with the SM prediction in [3], implies
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The tree-level expression for �aµ in terms of the Wilson coe�cient of the dipole operator is
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where v ⇡ 246 GeV and ⇤ is a certain mass scale of NP. Here the Wilson coe�cient is understood

to be evaluated at the weak scale (we neglect the small e↵ect of running below the weak scale), and

the prime of the Wilson coe�cient indicates the flavor basis corresponding to the mass-eigenstate

basis of charged leptons 6. Inputting the experimental results leads to
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The tree-level expression of a radiative LFV rate in terms of the Wilson coe�cients is

B(`r ! `s�) =
m

3
`r
v
2

8⇡�`r

1

⇤4

✓
|C

0
e�
rs

|
2 + |C

0
e�
sr

|
2

◆
. (A.5)

6
The one-loop relation can be found in [175].
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where EL and ER denote three flavors of left-handed and right-handed leptons, respectively, and v
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In order to investigate the flavor structure of the Wilson coe�cient of the dipole operator, let us be-
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2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:

Oe�

LR

=
v
p
2
EL�

µ⌫
ERFµ⌫ , C

0
e�

LR

=

0

BBB@

C
0
e�
ee

C
0
e�
eµ

C
0
e�
e⌧

C
0
e�
µe

C
0
e�
µµ

C
0
e�
µ⌧

C
0
e�
⌧e

C
0
e�
⌧µ

C
0
e�
⌧⌧

1

CCCA
,

Oe�

RL

=
v
p
2
ER�

µ⌫
ELFµ⌫ , C

0
e�

RL

= C
0 †
e�

LR

, (3.1)

2
The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].

3

is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:

Oe�

LR

=
v
p
2
EL�

µ⌫
ERFµ⌫ , C

0
e�

LR

=

0

BBB@

C
0
e�
ee

C
0
e�
eµ

C
0
e�
e⌧

C
0
e�
µe

C
0
e�
µµ

C
0
e�
µ⌧

C
0
e�
⌧e

C
0
e�
⌧µ

C
0
e�
⌧⌧

1

CCCA
,

Oe�

RL

=
v
p
2
ER�

µ⌫
ELFµ⌫ , C

0
e�

RL

= C
0 †
e�

LR

, (3.1)

2
The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].

3

(g − 2)μ Lepton flavor violation μ → eγ

we have obtained de/e ' 2 ⇥ 10�16⇤2 sin�, where ⇤ denotes a certain mass scale, and � is an

unknown phase of O(1) in the Wilson coe�cient. Then, de/e is expected to be 2 ⇥ 10�14 (5 ⇥

10�13) TeV�1 for ⇤ = 10 (50)TeV. These are consistent with the present upper bound de/e <

5.6⇥ 10�13 TeV�1.

Thus, our Ansatz in the SMEFT with the modular symmetry of flavors is powerful to study

the leptonic phenomena of flavors comprehensively.
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Appendix

A Experimental constraints on the dipole operators

We summarize briefly the experimental constraints on the dipole operators given by Ref. [19].

Below the scale of electroweak symmetry breaking, the leptonic dipole operators are given as:
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where {r, s} are flavor indices e, µ, ⌧ and Fµ⌫ is the electromagnetic field strength tensor. The
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in the mass basis of leptons.

The combined result from the E989 experiment at FNAL [1] and the E821 experiment at
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where v ⇡ 246 GeV and ⇤ is a certain mass scale of NP. Here the Wilson coe�cient is understood

to be evaluated at the weak scale (we neglect the small e↵ect of running below the weak scale), and

the prime of the Wilson coe�cient indicates the flavor basis corresponding to the mass-eigenstate

basis of charged leptons 6. Inputting the experimental results leads to
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The tree-level expression of a radiative LFV rate in terms of the Wilson coe�cients is
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The one-loop relation can be found in [175].
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Using this expression, the experimental bound B(µ+
! e

+
�) < 4.2 ⇥ 10�13 (90% C.L.) obtained

by the MEG experiment [165] can be translated into the upper bound
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Taking into account Eqs. (A.4) and (A.6), we have the ratio:
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B A4 modular symmetry

B.1 Modular flavor symmetry

We briefly review the models with A4 modular symmetry. The modular group �̄ is the group of

linear fractional transformations � acting on the modulus ⌧ , belonging to the upper-half complex

plane as:

⌧ �! �⌧ =
a⌧ + b

c⌧ + d
, where a, b, c, d 2 Z and ad� bc = 1, Im[⌧ ] > 0 , (B.1)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,�I} transformation. This modular transforma-

tion is generated by S and T ,
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which satisfy the following algebraic relations,
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For N = 2, we define �̄(2) ⌘ �(2)/{I,�I}. Since the element �I does not belong to �(N) for

N > 2, we have �̄(N) = �(N). The quotient groups defined as �N ⌘ �̄/�̄(N) are finite modular

groups. In these finite groups �N , TN = I is imposed. The groups �N with N = 2, 3, 4, 5 are

isomorphic to S3, A4, S4 and A5, respectively [31].

Modular forms fi(⌧) of weight k are the holomorphic functions of ⌧ and transform as

fi(⌧) �! (c⌧ + d)k⇢(�)ijfj(⌧) , � 2 �̄ , (B.5)
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value of Eq.(A.2), the real part of the Wilson coe�cient of the muon C
0
e�
µµ

has been obtained as

seen in Eq.(A.4) [19]. Now, we can estimate the magnitude of the electron (g � 2)e anomaly by

using the relation in Eq.(4.1) as:

�ae =
4me

e

v
p
2

1

⇤2
Re [C 0

e�
ee

] ' 5.8⇥ 10�14
, (4.2)

where ⇤ denotes a certain mass scale of NP. It is easily seen that �ae and �aµ are proportional

to the lepton masses squared. This result is agreement with the naive scaling �a` / m
2
`
[161].

In the electron anomalous magnetic moment, the experiments [162] give

a
Exp
e

= 1159 652 180.73(28)⇥ 10�12
, (4.3)

while the SM prediction crucially depends on the input value for the fine-structure constant ↵.

Two latest determination [163,164] based on Cesium and Rubidium atomic recoils di↵er by more

than 5�. Those observations lead to the di↵erence from the SM prediction

�a
Cs

e
= a

Exp
e

� a
SM,CS
e

= (�8.8± 3.6)⇥ 10�13
,

�a
Rb

e
= a

Exp
e

� a
SM,Rb
e

= (4.8± 3.0)⇥ 10�13
. (4.4)

Our predicted value is small of one order compared with the present observed one at present. We

wait for the precise observation of the fine structure constant to test our framework.

4.2 (g � 2)µ and µ ! e�

The NP in the LFV process is severely constrained by the experimental bound B(µ+
! e

+
�) <

4.2 ⇥ 10�13 in the MEG experiment [165]. We can discuss the correlation between the anomaly

of the muon (g � 2)µ and the LFV process µ ! e� by using the Wilson coe�cients in Eqs.(3.18)

and (3.19). The ratio is given as:
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=
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�����1�
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����� . (4.5)

Let us introduce small parameters �↵, �� and �� as follows:
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=
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↵̃e(m)
=
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�̃e(m)
=
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= 1 +

c�

�̃e(m)
⌘ 1 + �� , (4.6)

9

is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].
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Wilson coefficients in A4 modular symmetry in mass basis
However, the coe�cients of the bilinear R̄L operators µ̄R�⌧L, ēR�⌧L and ēR�µL are not so

suppressed. Those operators may lead to the sizable LFV decays. Including a common overall

factor (1�
p
3), which is omitted in Table 2, the coe�cients are given as:

C
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2
(1�

p
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!
, (3.18)

where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).

On the other hand, the diagonal coe�cients of the bilinear R̄L operators ēR�eL, µ̄R�µL and

⌧̄R�⌧L are given as:

C
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e�
ee

= 3 (1�
p
3)�̃e|✏

⇤
1| , C

0
e�
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=
3

2
(1�

p
3)↵̃e , C

0
e�
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=
p
3 (1�

p
3)�̃e , (3.19)

where the phase of ✏1 is rotated away. These give the anomalous magnetic moment of leptons.

4 Phenomenology of (g � 2)µ, e, LFV and EDM

The anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is a powerful probe beyond the

SM. The recent experimental measurement of aµ by the E989 experiment at FNAL [1], combined

with the previous BNL result [2], has indicated the discrepancy with the SM prediction reported

in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.

4.1 (g � 2)µ and (g � 2)e

The NP of (g�2)µ and (g�2)e appears in the diagonal components of the Wilson coe�cient of the

dipole operator at the mass basis. We have the ratios of the diagonal coe�cients from Eq.(3.19)

as:

C
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C 0
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= 2
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1| ' 4.9⇥ 10�3

,
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C 0
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=

p
3
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↵̃e

�̃e
' 5.9⇥ 10�2

, (4.1)

where numerical values of Eq.(3.17) are put for �̃e/↵̃e, ↵̃e/�̃e and |✏
⇤
1|. These predicted ratios are

almost agree with the charged lepton mass ratios me/mµ = 4.84⇥10�3 and mµ/m⌧ = 5.95⇥10�2.

If this dipole operator is responsible for the observed anomaly of (g � 2)µ, the magnitude of

its Wilson coe�cient can be estimated as shown in Appendix A. By inputting the experimental
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in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.
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1|. These predicted ratios are
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where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
�����1�

↵̃e

↵̃e(m)

�̃e(m)

�̃e

����� ' |�� � �↵| < 1.4⇥ 10�3
, (4.7)

which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
! e

+
L
� and µ

+
! e

+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we

obtain ratios of the Wilson coe�cients by using Eq.(3.18) as:

C
0
e�
⌧e

C 0
e�
µe

=
1
p
3
⇥O(1) ,

C
0
e�
⌧e

C 0
e�
⌧µ

=
�̃e

↵̃e

⇥O(1) ⇠ 10�2
, (4.9)

where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).

We obtain the Wilson coe�cients by using Eq.(3.18):
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Therefore, ratios of the Wilson coe�cients are expected as:

C
0
e�
⌧e

C 0
e�
µe

'
1
p
3
,

C
0
e�
⌧e

C 0
e�
⌧µ

'
�̃e��

↵̃e�↵
'

�̃e
c

�̃e(m)

↵̃e
c

↵̃e(m)

' 1 . (4.11)

It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.

10

< 2.1 × 10−5
where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
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which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
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+
L
� and µ

+
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+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we
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where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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without tuning between  , δα,β

 & (g − 2)μ μ → eγ

value of Eq.(A.2), the real part of the Wilson coe�cient of the muon C
0
e�
µµ

has been obtained as

seen in Eq.(A.4) [19]. Now, we can estimate the magnitude of the electron (g � 2)e anomaly by

using the relation in Eq.(4.1) as:

�ae =
4me

e

v
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2

1

⇤2
Re [C 0

e�
ee

] ' 5.8⇥ 10�14
, (4.2)

where ⇤ denotes a certain mass scale of NP. It is easily seen that �ae and �aµ are proportional

to the lepton masses squared. This result is agreement with the naive scaling �a` / m
2
`
[161].

In the electron anomalous magnetic moment, the experiments [162] give

a
Exp
e

= 1159 652 180.73(28)⇥ 10�12
, (4.3)

while the SM prediction crucially depends on the input value for the fine-structure constant ↵.

Two latest determination [163,164] based on Cesium and Rubidium atomic recoils di↵er by more

than 5�. Those observations lead to the di↵erence from the SM prediction
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= (�8.8± 3.6)⇥ 10�13
,
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= (4.8± 3.0)⇥ 10�13
. (4.4)

Our predicted value is small of one order compared with the present observed one at present. We

wait for the precise observation of the fine structure constant to test our framework.

4.2 (g � 2)µ and µ ! e�

The NP in the LFV process is severely constrained by the experimental bound B(µ+
! e

+
�) <

4.2 ⇥ 10�13 in the MEG experiment [165]. We can discuss the correlation between the anomaly

of the muon (g � 2)µ and the LFV process µ ! e� by using the Wilson coe�cients in Eqs.(3.18)

and (3.19). The ratio is given as:
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Let us introduce small parameters �↵, �� and �� as follows:
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where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
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, (4.7)

which suggests
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].

3

Wilson coefficients in A4 modular symmetry in mass basis
However, the coe�cients of the bilinear R̄L operators µ̄R�⌧L, ēR�⌧L and ēR�µL are not so

suppressed. Those operators may lead to the sizable LFV decays. Including a common overall

factor (1�
p
3), which is omitted in Table 2, the coe�cients are given as:
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where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).

On the other hand, the diagonal coe�cients of the bilinear R̄L operators ēR�eL, µ̄R�µL and

⌧̄R�⌧L are given as:
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where the phase of ✏1 is rotated away. These give the anomalous magnetic moment of leptons.

4 Phenomenology of (g � 2)µ, e, LFV and EDM

The anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is a powerful probe beyond the

SM. The recent experimental measurement of aµ by the E989 experiment at FNAL [1], combined

with the previous BNL result [2], has indicated the discrepancy with the SM prediction reported

in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.

4.1 (g � 2)µ and (g � 2)e

The NP of (g�2)µ and (g�2)e appears in the diagonal components of the Wilson coe�cient of the

dipole operator at the mass basis. We have the ratios of the diagonal coe�cients from Eq.(3.19)

as:
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, (4.1)

where numerical values of Eq.(3.17) are put for �̃e/↵̃e, ↵̃e/�̃e and |✏
⇤
1|. These predicted ratios are

almost agree with the charged lepton mass ratios me/mµ = 4.84⇥10�3 and mµ/m⌧ = 5.95⇥10�2.

If this dipole operator is responsible for the observed anomaly of (g � 2)µ, the magnitude of

its Wilson coe�cient can be estimated as shown in Appendix A. By inputting the experimental
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where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
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which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
! e

+
L
� and µ

+
! e

+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we

obtain ratios of the Wilson coe�cients by using Eq.(3.18) as:
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where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).

We obtain the Wilson coe�cients by using Eq.(3.18):
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Therefore, ratios of the Wilson coe�cients are expected as:
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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the case that the additional unknown mode is the Higgs-like mode (δα ∼ δβ ∼ δγ)

e.g. U(2) case

BR(5 → 67) ≫ BR(6 → 87) ~ BR(5 → 87)

BR(5 → 67) ≫ BR(6 → 87) ≫ BR(5 → 87)
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We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].
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See also [153–156].
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Wilson coefficients in A4 modular symmetry in mass basis
However, the coe�cients of the bilinear R̄L operators µ̄R�⌧L, ēR�⌧L and ēR�µL are not so

suppressed. Those operators may lead to the sizable LFV decays. Including a common overall

factor (1�
p
3), which is omitted in Table 2, the coe�cients are given as:
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where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).

On the other hand, the diagonal coe�cients of the bilinear R̄L operators ēR�eL, µ̄R�µL and

⌧̄R�⌧L are given as:
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where the phase of ✏1 is rotated away. These give the anomalous magnetic moment of leptons.

4 Phenomenology of (g � 2)µ, e, LFV and EDM

The anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is a powerful probe beyond the

SM. The recent experimental measurement of aµ by the E989 experiment at FNAL [1], combined

with the previous BNL result [2], has indicated the discrepancy with the SM prediction reported

in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.

4.1 (g � 2)µ and (g � 2)e

The NP of (g�2)µ and (g�2)e appears in the diagonal components of the Wilson coe�cient of the

dipole operator at the mass basis. We have the ratios of the diagonal coe�cients from Eq.(3.19)

as:
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where numerical values of Eq.(3.17) are put for �̃e/↵̃e, ↵̃e/�̃e and |✏
⇤
1|. These predicted ratios are

almost agree with the charged lepton mass ratios me/mµ = 4.84⇥10�3 and mµ/m⌧ = 5.95⇥10�2.

If this dipole operator is responsible for the observed anomaly of (g � 2)µ, the magnitude of

its Wilson coe�cient can be estimated as shown in Appendix A. By inputting the experimental
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LFV  &  & τ → μγ τ → eγ μ → eγ

where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
�����1�

↵̃e

↵̃e(m)

�̃e(m)

�̃e

����� ' |�� � �↵| < 1.4⇥ 10�3
, (4.7)

which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
! e

+
L
� and µ

+
! e

+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we

obtain ratios of the Wilson coe�cients by using Eq.(3.18) as:
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where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).

We obtain the Wilson coe�cients by using Eq.(3.18):

C
0
e�
⌧µ

=

p
3

2
(1�

p
3)↵̃e

✓
1�

1 + ��

1 + �↵

◆
'

p
3

2
(1�

p
3)↵̃e�↵ ,

C
0
e�
⌧e

=

p
3

2
(1�

p
3)�̃e

✓
1 +

1 + �↵

1 + ��
� 2

1 + ��

1 + ��

◆
'

p
3

2
(1�

p
3)�̃e(�↵ + ��) ,

C
0
e�
µe

=
3

2
(1�

p
3)�̃e

✓
1�

1 + �↵

1 + ��

◆
'

3

2
(1�

p
3)�̃e(�� � �↵) . (4.10)

Therefore, ratios of the Wilson coe�cients are expected as:
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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the case that the additional unknown mode is the Higgs-like mode (δα ∼ δβ ∼ δγ)

BR(5 → 67) ≫ BR(6 → 87) ~ BR(5 → 87)

Since the present upper bounds of B(τ → eγ) and B(τ → μγ) are 3.3 × 10−8 and 4.4 × 10−8, 
respectively, we expect the experimental test of this prediction for τ → μγ in the future 
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ee
] < 1.6 × 10−12 TeV−2

where de = de(µ = me). Therefore, the EDM of the electron is extracted from the e↵ective

Lagrangian
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which leads to
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at tree level, where the small e↵ect of running below the electroweak scale is neglected. The

experimental upper bound in Eq.(4.21) leads to:
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, (4.26)

and it may be compared with its real part of
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which is derived by Eqs.(4.1) and (A.4). What is the origin of the tiny imaginary part of C 0
e�
ee

? The

coe�cient C 0
e�
ee

in Eq.(3.19) is rewritten in a term of small parameter �� likewise Eq.(4.6)
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where �e(m) is taken to be real positive by the redefinition of the right-handed charged lepton field

in order to reproduce real positive charged lepton mass. However, ��, which is originated from the

unknown mode of m, is complex in general. The small parameter �� could be related to both the

µ ! e� transition and the electron EDM. Eqs.(4.10) and (4.28) lead to
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Putting the constraints of experiments in Eqs.(4.21) and (4.27), we obtain
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]

Re [C 0
e�
ee

]
' (Im ��) <

1.6⇥ 10�12

4.9⇥ 10�8
= 3.3⇥ 10�5

. (4.30)

Suppose |Im ��| ' |��| and |�↵| ' |��| (or |�↵| ⌧ |��| ), then, this bound is stronger than 1.4⇥10�3

from the µ ! e� in Eq.(4.7). Indeed, the upper bound of the electron EDM forces the branching

ratio of µ ! e� to be B(µ+
! e

+
�) < 2.3⇥ 10�16.

The muon and the tauon EDM may be interesting in high-energy model building [173]. We

can also estimate them by using Eq.(3.19). It is easily found that the predicted value increases

at most proportional to its mass. The muon EDM is predicted to be far smaller than the present

upper bound [174].
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is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].
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See also [153–156].

3

and µH(L) denotes the higher (lower) mass scale. The coe�cient in front of Cledq is numerically

small. The coe�cients CeH controls the µ–e flavor violating coupling of the physical Higgs boson,

which is tightly constrained by other observables [168,169] and can be safely ignored in the present

analysis.

Finally, approximate evolutions are obtained as follows:
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(µH) . (4.19)

It is emphasized that the leptonic flavor structures of C(3)
`equ

rs33

(µH) and C
(1)
`equ

rs33

(µH) are just the same

ones as Ce�
rs
(µH) because these Wilson coe�cients of the 4-fermion operator are written by a

product of 3-point coupling of leptons and that of quarks in our Ansatz Eq.(2.1). Therefore, the

RG contributions do not change the flavor structure of Ce�
rs
(µH) apart from the overall factor at

low-energy.

On the other hand, [Ye]rs(µL) has non-trivial RG contribution to the flavor structure due

to C
(1)
`equ

rs33

(µH), which has the same flavor structure of Ce�
rs
(µH). If magnitudes of C(1)
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(µH) and

C
(3)
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(µH) are comparable, we have the relation by using the numerical value of (A.4),
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, (4.20)

where both sides denote relative contributions of the RG versus diagonal (2,2) components of

Ce�
rs
(µL) and [Ye]rs(µL), respectively. Thus, the impact of the term 6v2L̂y3

t
C

(1)
`equ

rs33

(µH) on the flavor

structure is minor in Eq.(4.19) as far as the RG terms are next-to-leading ones. Therefore, our

numerical result in section 4 is still available even if the RG e↵ect is included.

4.4 EDM of the electron

The current experimental limit for the electric dipole moment of the electron is given by ACME

collaboration [170]:

|de/e| . 1.1⇥ 10�29 cm = 5.6⇥ 10�13 TeV�1
, (4.21)

at 90% confidence level. Precise measurements of the electron EDM are rapidly being updated.

The future sensitivity at ACME III is [171, 172]:

|de/e| . 0.3⇥ 10�30 cm = 1.5⇥ 10�14 TeV�1
. (4.22)

The EDM of the electron de is defined in the operator:

Oedm = �
i

2
de(µ) e�

µ⌫
�5eFµ⌫ , (4.23)
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structure is minor in Eq.(4.19) as far as the RG terms are next-to-leading ones. Therefore, our

numerical result in section 4 is still available even if the RG e↵ect is included.

4.4 EDM of the electron

The current experimental limit for the electric dipole moment of the electron is given by ACME

collaboration [170]:

|de/e| . 1.1⇥ 10�29 cm = 5.6⇥ 10�13 TeV�1
, (4.21)

at 90% confidence level. Precise measurements of the electron EDM are rapidly being updated.

The future sensitivity at ACME III is [171, 172]:

|de/e| . 0.3⇥ 10�30 cm = 1.5⇥ 10�14 TeV�1
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The EDM of the electron de is defined in the operator:
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ACME 

where EL and ER denote three flavors of left-handed and right-handed leptons, respectively, and v

denotes the vacuum expectation value (VEV) of the Higgs field H. Here the prime of the Wilson

coe�cient indicates the flavor basis corresponding to the mass-eigenstate basis of charged leptons.

The relevant e↵ective Lagrangian is written as:

Ldipole =
1

⇤2

✓
C
0
e�

LR

Oe�

LR

+ C
0
e�

RL

Oe�

RL

◆
, (3.2)

where ⇤ is a certain mass scale of NP in the e↵ective theory.

In the following discussions, we take the A4 modular symmetry for leptons. Most of modular

flavor models are supersymmetric models. Since we study the model below the supersymmetry

breaking scale, the light modes are exactly the same as the SM with two doublet Higgs models.

Note that the modular symmetry is still a symmetry of the low-energy e↵ective action below

the supersymmetry breaking scale, as confirmed in the moduli-mediated supersymmetry breaking

scenario.

3.1 Representation of charged leptons in A4 modular invariant model

We take a simple A4 modular-invariant flavor model of leptons, which is successful in reproducing

neutrino masses and mixing angles, as shown explicitly in Appendix C. In the model, the left-

handed charged leptons compose a A4 triplet 3 and the three right-handed ones are A4 three

di↵erent singlets. Then, those are expressed as follows:

EL =

0

@
eL

µL

⌧L

1

A , ĒL =

0

@
ēL

⌧̄L

µ̄L

1

A , (ec
R
, µ

c

R
, ⌧

c

R
) = (1, 100, 10) , (eR, µR, ⌧R) = (1, 10, 100) . (3.3)

It is noticed that leptons of second and third families are exchanged each other in ĒL. As seen

in the Table of Appendix C, both EL and ĒL have the same modular weight, �k = �2. On the

other hand, k = 0 for ec
R
, eR, etc..

The holomorphic and anti-holomorphic modular forms of weight 2 compose the A4 triplet:

Y (⌧) =

0

@
Y1(⌧)

Y2(⌧)

Y3(⌧)

1

A , Y (⌧) ⌘ Y
⇤(⌧) =

0

@
Y

⇤
1 (⌧)

Y
⇤
3 (⌧)

Y
⇤
2 (⌧)

1

A , (3.4)

where modular forms are given explicitly in Appendix B.2.

3.2 [ ĒR�EL ] and [ ĒL�ER ] bilinears in the flavor space

In order to investigate the flavor structure of the Wilson coe�cient of the dipole operator, let us be-

gin with discussing the holomorphic operator of charged leptons, [ ĒR�EL ] and anti-holomorphic

4

is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-
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(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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, (3.1)

2
The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].
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However, the coe�cients of the bilinear R̄L operators µ̄R�⌧L, ēR�⌧L and ēR�µL are not so

suppressed. Those operators may lead to the sizable LFV decays. Including a common overall

factor (1�
p
3), which is omitted in Table 2, the coe�cients are given as:
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where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).

On the other hand, the diagonal coe�cients of the bilinear R̄L operators ēR�eL, µ̄R�µL and

⌧̄R�⌧L are given as:
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2
(1�

p
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0
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=
p
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p
3)�̃e , (3.19)

where the phase of ✏1 is rotated away. These give the anomalous magnetic moment of leptons.

4 Phenomenology of (g � 2)µ, e, LFV and EDM

The anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is a powerful probe beyond the

SM. The recent experimental measurement of aµ by the E989 experiment at FNAL [1], combined

with the previous BNL result [2], has indicated the discrepancy with the SM prediction reported

in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.

4.1 (g � 2)µ and (g � 2)e

The NP of (g�2)µ and (g�2)e appears in the diagonal components of the Wilson coe�cient of the

dipole operator at the mass basis. We have the ratios of the diagonal coe�cients from Eq.(3.19)

as:
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= 2
�̃e
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⇤
1| ' 4.9⇥ 10�3

,

C
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µµ

C 0
e�
⌧⌧

=

p
3

2

↵̃e

�̃e
' 5.9⇥ 10�2

, (4.1)

where numerical values of Eq.(3.17) are put for �̃e/↵̃e, ↵̃e/�̃e and |✏
⇤
1|. These predicted ratios are

almost agree with the charged lepton mass ratios me/mµ = 4.84⇥10�3 and mµ/m⌧ = 5.95⇥10�2.

If this dipole operator is responsible for the observed anomaly of (g � 2)µ, the magnitude of

its Wilson coe�cient can be estimated as shown in Appendix A. By inputting the experimental

8

Re vs. Im
coupling relation in A4 
modular sym.

with

EDM  & de (g − 2)μ
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Λ2 Re [:′ eγ

ee
] = 4.9 × 10−8 TeV−21

Λ2 Re [:′ eγ
μμ

] ≈ 1.0 × 10−5 TeV−2



1
Λ2 Im [:′ eγ

ee
] < 1.6 × 10−12 TeV−2 1

Λ2 Re [:′ eγ
ee

] = 4.9 × 10−8 TeV−2

electron EDMde

where de = de(µ = me). Therefore, the EDM of the electron is extracted from the e↵ective

Lagrangian
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1

⇤2
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0
e�
ee

Oe�

LR

=
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C
0
e�
ee

v
p
2
eL�

µ⌫
eRFµ⌫ , (4.24)

which leads to

de = �
p
2

v

⇤2
Im [C 0

e�
ee

] , (4.25)

at tree level, where the small e↵ect of running below the electroweak scale is neglected. The

experimental upper bound in Eq.(4.21) leads to:
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⇤2
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e�
ee

] < 1.6⇥ 10�12 TeV�2
, (4.26)

and it may be compared with its real part of

1

⇤2
Re [C 0

e�
ee

] = 4.9⇥ 10�8 TeV�2
, (4.27)

which is derived by Eqs.(4.1) and (A.4). What is the origin of the tiny imaginary part of C 0
e�
ee

? The

coe�cient C 0
e�
ee

in Eq.(3.19) is rewritten in a term of small parameter �� likewise Eq.(4.6)

C
0
e�
ee

= 3 (1�
p
3)�̃e|✏

⇤
1| = 3 (1�

p
3)�̃e(m)(1 + ��)|✏

⇤
1| , (4.28)

where �e(m) is taken to be real positive by the redefinition of the right-handed charged lepton field

in order to reproduce real positive charged lepton mass. However, ��, which is originated from the

unknown mode of m, is complex in general. The small parameter �� could be related to both the

µ ! e� transition and the electron EDM. Eqs.(4.10) and (4.28) lead to

Im [C 0
e�
ee

] ' 3 (1�
p
3)�̃e(m)(Im ��)|✏

⇤
1| , C

0
e�
µe

'
3

2
(1�

p
3)�̃e(m)(�� � �↵) . (4.29)

Putting the constraints of experiments in Eqs.(4.21) and (4.27), we obtain

Im [C 0
e�
ee

]

Re [C 0
e�
ee

]
' (Im ��) <

1.6⇥ 10�12

4.9⇥ 10�8
= 3.3⇥ 10�5

. (4.30)

Suppose |Im ��| ' |��| and |�↵| ' |��| (or |�↵| ⌧ |��| ), then, this bound is stronger than 1.4⇥10�3

from the µ ! e� in Eq.(4.7). Indeed, the upper bound of the electron EDM forces the branching

ratio of µ ! e� to be B(µ+
! e

+
�) < 2.3⇥ 10�16.

The muon and the tauon EDM may be interesting in high-energy model building [173]. We

can also estimate them by using Eq.(3.19). It is easily found that the predicted value increases

at most proportional to its mass. The muon EDM is predicted to be far smaller than the present

upper bound [174].
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at most proportional to its mass. The muon EDM is predicted to be far smaller than the present
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SUSY extensions of the SM have Baryon/Lepton numbers breaking 
interactions  →Proton decay 

Baryon/Lepton-number violating operators 

B/L num. violating ope. can be forbidden by modular symmetry 

→ assume R-parity 

2.2. R-パリティについて 8

つに，陽子崩壊がある．陽子が他の粒子に崩壊するという現象が観測されていない事
実を説明するためには，何らかの方法によってこのような崩壊を禁止するような状況
を要請しなければならない．そこで導入されるのがR-パリティである．R-パリティは
Sをスピン，Bをバリオン数，Lをレプトン数として，以下のように定義される；

R = (−1)3(B−L)+2S. (2.4)

標準模型粒子は偶（固有値が+1），超対称性粒子は奇（固有値が−1）のR-パリティ
をもつ．R-パリティが保存するならば，相互作用頂点において超対称粒子は偶数個存
在する．したがってR-パリティが保存していれば，陽子崩壊を禁止することができる．
また，R-パリティが存在すると LSPは安定となるため，この粒子が暗黒物質の有力候
補となり得ることが知られている．このように，R-パリティの導入は現象論的要請を
満たす上で極めて重要な役割を果たしている [9, 10]．しかしR-パリティは人為的に課
された対称性であり，超対称性やゲージ対称性からはR-パリティ保存は保障されてい
ない．そのためR-パリティを課さない模型，言い換えればR-パリティの破れを伴う模
型で，本当にこれらの現象論的要請の説明が困難か否かを考察することは極めて重要
である．たとえば，R-パリティが破れていれば図 2.1で示したような，陽子崩壊プロ
セスが生じる．ここで，s̃Rとは右巻きストレンジクォークの超対称性粒子，スカラー

図 2.1: ¯̃sRを介した陽子崩壊プロセス, p → π0e+．R-パリティを破る相互作用によって
引き起こされる．

ストレンジクォークを表している1．一般には，陽子崩壊を避けるためにこのようなプ
1超対称性粒子の構成については次節で紹介する．
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Baryon/Lepton-number violating operators 

Yukawa/Higher-dim. ops. : even-modular weights (;< ∈ 2Z) 

Y(τ) → (cτ + d)kρ(γ)Y(τ)

Matter Parities from Finite Modular Symmetries arXiv:2207.14014 [hep-ph]

西村皐（九州大学）小林達夫（北海道大学）大塚啓（九州大学）谷本盛光（新潟大学）山本恵（広島工業大学）

1. 概要

標準模型の超対称な拡張（MSSM,…）は
レプトン数・バリオン数を破るような
高次演算子が理論に含まれる。

例）陽子崩壊

モジュラー対称性に対する不変性から、
これらの高次演算子を禁止できる
可能性を具体的に示し、その分類を
明らかにした。

4. 整数・分数ウェイトのMSSM

例） 𝑘Higgsが偶数のとき

(i) 他全て偶数
→ 陽子崩壊など、バリオン数や

レプトン数を破る相互作用が許容。

(ii) 𝑘𝑄, 𝑘𝑈,𝐷 が奇数、 𝑘𝐿, 𝑘𝐸,𝑁 が偶数
→ バリオン数を破る過程が禁止。

(iii) 𝑘𝑄, 𝑘𝑈,𝐷 が奇数、 𝑘𝐿, 𝑘𝐸,𝑁, 𝑘Higgs が偶数
→ レプトン数を破る過程が禁止。

(iv) 他全て奇数
→ R-parityが実現し、バリオン数や

レプトン数を破る過程が禁止。
超対称粒子の安定性も導く。

2. モジュラー対称性

2.1. モジュラー変換とは

SL(2,Z) 変換 𝜏 → 𝛾𝜏 = 𝑎𝜏+𝑏
𝑐𝜏+𝑑

𝑎𝑑 − 𝑏𝑐 = 1 S変換 𝜏 → − 1
𝜏

𝑆2 = −1
T変換 𝜏 → 𝜏 + 1 𝑆𝑇 3 = 1

主要合同部分群 Γ ሻሺ𝑁 = 𝑎 𝑏
𝑐 𝑑 ∈ 𝑆𝐿 2, 𝑍 ; 𝑎 𝑏

𝑐 𝑑 ≡ 1 0
0 1 mod 𝑁

𝑃𝑆𝐿 2, 𝑍 = 𝑆𝐿 2, 𝑍 /𝑍2 , തΓ 𝑁 = Γ ሻሺ𝑁 /𝑍2 → Γ𝑁 = 𝑃𝑆𝐿 2, 𝑍 /തΓ 𝑁 を定義。

例） Γ2 ≃ 𝑆3（3次の対称群）、 Γ3 ≃ 𝐴4（4次の交代群）

3. SUSYへの応用
Super potential

𝑊 =
𝑛

𝑌𝐼1⋯𝐼𝑛 𝜏 Φ𝐼1 ⋯Φ𝐼𝑁

Chiral supermultiplet Φ𝐼 や結合 𝑌𝐼1⋯𝐼𝑛 𝜏 に
modular weightを割り当て、ポテンシャルの
モジュラー不変性を要求。

→ ウェイトの和が満たすべき条件

𝑊 = 𝑦𝑖𝑗𝑢𝑄𝑖𝐻𝑢 ഥ𝑈𝑗 + 𝑦𝑖𝑗𝑑𝑄𝑖𝐻𝑑ഥ𝐷𝑗 + 𝑦𝑖𝑗𝑙 𝐿𝑖𝐻𝑑 ത𝐸𝑗
+ 𝑦𝑖𝑗𝑛𝐿𝑖𝐻𝑢𝑁𝑗 + 𝑚𝑖𝑗

𝑛𝑁𝑖𝑁𝑗 + 𝜇𝐻𝑢𝐻𝑑

整数 𝑘𝑄, 𝑘𝑈,𝐷, 𝑘𝐿, 𝑘𝐸,𝑁, 𝑘Higgs の偶奇の
組み合わせで実質４種類に分類可能

5. 総括・展望
論文中ではSUSY SU(5) GUTやSO(10) GUTについても
議論しており、MSSMの場合と同様に、
高次演算子を禁止するような分類が可能であった。

整数ウェイトではR-parityが実現し、
分数ウェイトではproton hexalityが実現された。

今回は Γ𝑁での変換に対する議論を行ったが、
その二重被覆 Γ𝑁′をモジュラー群として考えると、
低エネルギー有効理論においてどういう相互作用が
許されるか、といった詳細が変わり得る。

更にCP変換を不変性に取り入れると、
モジュラー群が GL(2,Z) に拡大するため、
その影響を考察する方向性も考えられる。

2.2. モジュラー形式とは

ウェイト 𝑘, ユニタリ行列 𝜌
𝑓𝑖 𝛾𝜏 = 𝑐𝜏 + 𝑑 𝑘𝜌𝑖𝑗 𝛾 𝑓𝑗 𝜏

特にS変換に関して、
𝑓𝑖 𝑆2𝜏 = −1 𝑘𝜌𝑖𝑗 𝑆2 𝑓𝑗 𝜏

Γ𝑁では 𝑆2𝜏 = 𝜏が成り立っていて、 −1 𝑘𝜌𝑖𝑗 𝑆2 = 𝐼

k が偶数 → 𝜌𝑖𝑗 𝑆2 = 𝐼
k が奇数 → 𝜌𝑖𝑗 𝑆2 = −𝐼

modular form

modular transformation. Finally, we investigate baryon- and/or lepton-number violating
operators in the MSSM with finite modular symmetries in Sec. 2.3.

2.1 Finite modular symmetries

The SL(2,Z) modular group is defined by linear fraction transformations of the complex
structure modulus ⌧ in an upper half complex plane i.e., Im(⌧) > 0:

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
(2.1)

with {a, b, c, d} 2 Z satisfying ad� bc = 1. The generators of SL(2,Z) group are given by
S and T :

S : ⌧ ! �1

⌧
, T : ⌧ ! ⌧ + 1 , (2.2)

satisfying

S2 = �I , (ST )3 = I . (2.3)

By introducing the principal congruence subgroup of level N with N 2 Z+:

�(N) =

("
a b

c d

#
2 SL(2,Z)

����

"
a b

c d

#
⌘

"
1 (modN) 0 (modN)

0 (modN) 1 (modN)

#)
, (2.4)

one can define a quotient group

�0
N ⌘ SL(2,Z)/�(N) = hS, T |S4 = (ST )3 = TN = I, S2T = TS2i . (2.5)

Since � and �� lead to the same modular transformation for ⌧ , the transformation group
of ⌧ is isomorphic to PSL(2,Z) = SL(2,Z)/{±I}. Then, we introduce �̄(N) ⌘ �(N)/{±I}
for N = 1, 2, whereas �̄(N) = �(N) for N > 2 due to the fact that �I is not the element
of �(N) with N > 2. In a similar way, the quotient group is also defined as

�N ⌘ PSL(2,Z)/�̄(N) = hS, T |S2 = (ST )3 = TN = Ii , (2.6)

which includes finite modular groups such as �2 ' S3, �3 ' A4, �4 ' S4 and �5 ' A5

[39]. These finite modular symmetries are widely used as flavor symmetries of quarks and
leptons (see for Refs. [63–73]). Note that �0

N
corresponds to the double cover of �N .

To construct the modular symmetric action, let us introduce holomorphic modular
forms f(⌧)i of positive integer weight k for �(N). Their transformations under �(N) are
given by

fi(�⌧) = (c⌧ + d)k⇢ij(�)fj(⌧) , (2.7)

for any � 2 �(N). Here, ⇢ is a unitary representation of �0
N

since it obeys

⇢(�2�1) = ⇢(�2)⇢(�1) , ⇢(h) = I , (2.8)

for �1, �2 2 � and h 2 �(N). Taking into account fi(S2⌧) = fi(⌧) for � = S2 = �I, the
transformation of modular forms

fi(S
2⌧) = (�1)k⇢ij(S

2)fj(⌧) (2.9)

gives rise to the constraint: (�1)k⇢(S2) = I. Therefore, there exist two possibilities [48]:
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(i) k = even, ⇢(S2) = I, i.e., ⇢ 2 �N ,

(ii) k = odd, ⇢(S2) = �I, i.e., ⇢ 2 �0
N

,

where it is notable that S2 is the element of PSL(2,Z). It turns out that the modular forms
of even (odd) weight and level N transform in representations of �N (�0

N
). Throughout

this paper, we focus on �N rather than its double cover �0
N

.
We are now ready to write down the modular invariant action in the framework of

N = 1 global SUSY. When we denote �I a set of chiral supermultiplets, the matter Kähler
potential is given by

K =
X

I

|�I |2

(i(⌧̄ � ⌧))kI
, (2.10)

where kI is a modular weight of �I . The above Kähler potential is invariant under the
following modular transformations:

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
,

�I ! (c⌧ + d)�kI⇢I(�)�I , (2.11)

with � 2 PSL(2,Z), where ⇢I(�) is the unitary representation of �N . Such a Kähler
potential, including the modulus kinetic term, will be determined by an ultraviolet physics
such as the string theory. In the framework of the string theory, the kinetic term of modulus
and matter multiplets are derived from the higher-dimensional Einstein-Hilbert term and
kinetic terms of higher-dimensional fermions as well as bosons, respectively. For instance,
in Type IIB magnetized D-brane models, the modulus ⌧ will correspond to the complex
structure modulus associated with the torus. Magnetic fluxes on the torus induce moduli-
dependent wavefunctions of degenerate chiral zero-modes, and their low-energy effective
field theory such as Yukawa couplings and other couplings is controlled by the modular
symmetry (see Refs. [32–38] for more details.). The higher-dimensional operators of matter
fields will be naturally suppressed with respect to the compactification scale. (See, Ref.
[74], for the modular flavor models from a higher-dimensional point of view.) In this paper,
we analyze the matter action in the framework of N = 1 global SUSY.

By contrast, the matter superpotential

W =
X

n

YI1...In(⌧)�I1 ...�In (2.12)

is modular invariant when the n-point coupling YI1...In(⌧) transforms as

YI1...In(⌧) ! YI1...In(�⌧) = (c⌧ + d)kY ⇢Y (�)YI1...In(⌧) (2.13)

with kY = kI1 + · · · + kIn and ⇢Y (�) ⌦ ⇢I1(�) ⌦ · · · ⌦ ⇢In(�) � 1. Note that in the �N

modular flavor models, kY should be an even integer.

– 4 –

focus on ΓN rather than its double cover Γ’N
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標準模型の超対称な拡張（MSSM,…）は
レプトン数・バリオン数を破るような
高次演算子が理論に含まれる。

例）陽子崩壊

モジュラー対称性に対する不変性から、
これらの高次演算子を禁止できる
可能性を具体的に示し、その分類を
明らかにした。

4. 整数・分数ウェイトのMSSM
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(i) 他全て偶数
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2.2 Discrete symmetries

Before going into the classification of baryon- and/or lepton-number violating operators,
we revisit the modular transformations of matter multiplets (2.11). When we act S2 trans-
formations on matter multiplets, it turns out that

�I ! (�1)�kI⇢I(S
2)�I = (�1)�kI�I , (2.14)

where we employ ⇢(S2) = I, i.e., ⇢ 2 �N . It indicates that there exists a Z2 symmetry
(�1)�kI with kI being an integer. When the modular weight kI is a fractional number such
as 1/M , it induces the Z2M symmetry for matter multiplets, namely (�1)kI = e2⇡i/(2M).
Such fractional modular weights are known in the string theory. For example, heterotic
string theory on toroidal ZM orbifolds have the modular weights kI = m/M with m =

integer [62], while their Yukawa couplings have integer modular weights. Also, Type IIB
string theory with magnetized D-branes leads to kI = 1/2 [34, 35]. Note that we consider
the positive modular weights throughout this paper.

The existence of discrete symmetry in the effective action depends on the assign-
ments of modular weights for matter multiplets. In the following analysis, we classify
the baryon- and/or lepton-number violating operators in a generic �N modular flavor
model rather than the double cover of �N , i.e., �0

N
.1 Under the finite modular symme-

tries �N = PSL(2,Z)/�̄(N) with N = 2, 3, 4, 5, matter multiplets and n-point couplings
have some representations with modular weights.2 At the moment, we analyze the case with
matter multiplets of integer weight kI and n-point couplings of even weight. We will return
to the matter multiplets of fractional weight in Sec. 5. As discussed in detail later, n-point
couplings described by holomorphic modular forms of even weights severely constrain the
higher-dimensional operators in the effective action.

2.3 Baryon- and/or lepton-number violating operators

In this section, we analyze the modular symmetric superpotential in the MSSM:

W = yuijQiHuŪj + ydijQiHdD̄j + y`ijLiHdĒj + ynijLiHuNj +mn

ijNiNj + µHuHd , (2.15)

where Yukawa couplings, Majorana masses, and µ-term are described by the holomor-
phic modular forms of even modular weight under �N , whereas chiral supermultiplets
Q, Ū , D̄, L, Ē,N,Hu and Hd have integer modular weight k corresponding to the Z2 charge
k (mod 2). Specifically, we represent the modular weights of matter multiplets, Yukawa
couplings, Majorana neutrino mass, and µ-term as

{kQ, kU , kD, kL, kE , kN , kHu , kHd , k
u

y , k
d

y , k
`

y, k
n

y , k
m, kµ} , (2.16)

for {Q, Ū , D̄, L, Ē, N, Hu, Hd, yu, yd, y`, yn, mn, µ}, respectively. To simplify our analy-
sis, we focus on family-independent modular weights in what follows. To be invariant under

1
See for the baryon- and lepton-number violating operators in an explicit modular flavor model [61],

where quarks and leptons have representations of different �N .
2
The flavor structure of n-point couplings in the string EFT was discussed from the viewpoint of the

modular symmetry [75].
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chiral supermultiplets (Q,U,D,L,E,N,H) have integer modular weight k 

 : modular weightki
the �N symmetry, the Higgs doublets {Hu, Hd} have the same Z2 parity under (�1)k; oth-
erwise, the µ-term has an odd modular weight. The same is true for {Ū , D̄} and {Ē,N}.
Therefore, we denote kHiggs = {kHu , kHd}, kU,D = {kU , kD} and kE,N = {kE , kN} since our
interest is the Z2 charge. Then, the modular invariant superpotential requires

kuy � kQ � kU,D � kHiggs = 0 , kdy � kQ � kU,D � kHiggs = 0 , k`y � kL � kE,N � kHiggs = 0 ,

kny � kL � kE,N � kHiggs = 0 , km � 2kN = 0, kµ � 2kHiggs = 0 , (2.17)

where the last two equations have trivial solutions due to {kµ, km} 2 2Z. Taking into
account {kuy , kdy , k`y, kny } 2 2Z, we arrive at two constraints:

kQ + kU,D + kHiggs = even , kL + kE,N + kHiggs = even . (2.18)

It turns out that there are 8 possible charge assignments in the MSSM with �N modular
symmetries. In each assignment, we present the allowed baryon- and/or lepton-number
violating terms in Table 2. Here, we deal with the baryon- and/or lepton-number violating
operators for the superpotential:

[LHu]F , [LLĒ]F , [LQD̄]F , [ŪD̄D̄]F ,

[QQQL]F , [Ū ŪD̄Ē]F , [QQQHd]F , [QŪĒHd]F , [LHuLHu]F , [LHuHdHu]F ,

(2.19)

and the Kähler potential:

[ŪD̄⇤Ē]D , [H⇤
uHdĒ]D , [QŪL⇤]D , [QQD̄⇤]D , (2.20)

where |F,D means the F - and D-components of corresponding chiral superfields, respec-
tively. Note that couplings in the superpotential (2.19) should be described by holomorphic
modular forms with even modular weights, but those in the Kähler potential (2.20) will
be invariant under the modular symmetry by the factor (i(⌧̄ � ⌧))�k and holomorphic
(anti-holomorphic) modular forms with even modular weights Y (⌧) (Y (⌧)⇤), i.e.,

�K = Y (⌧)IJY (⌧)⇤K
�I�J�⇤

K

(i(⌧̄ � ⌧))k
. (2.21)

Here, modular weights of {Y (⌧)IJ , Y (⌧)⇤
K
,�I ,�J ,�⇤

K
} are represented as

{kYIJ , kYK ,�kI ,�kJ ,�kK} , (2.22)

respectively, and k is properly chosen to make �K modular invariant. When they transform
under the modular symmetry, the induced automorphy factors

(c⌧ + d)kYIJ (c⌧̄ + d)kYK |c⌧ + d|2k(c⌧ + d)�kI (c⌧ + d)�kJ (c⌧̄ + d)�kK

= (c⌧ + d)k+kYIJ
�kI�kJ (c⌧̄ + d)k+kYK

�kK (2.23)

vanish when

k = �kYIJ + kI + kJ ,

k = �kYK + kK . (2.24)
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Therefore, we denote kHiggs = {kHu , kHd}, kU,D = {kU , kD} and kE,N = {kE , kN} since our
interest is the Z2 charge. Then, the modular invariant superpotential requires

kuy � kQ � kU,D � kHiggs = 0 , kdy � kQ � kU,D � kHiggs = 0 , k`y � kL � kE,N � kHiggs = 0 ,

kny � kL � kE,N � kHiggs = 0 , km � 2kN = 0, kµ � 2kHiggs = 0 , (2.17)

where the last two equations have trivial solutions due to {kµ, km} 2 2Z. Taking into
account {kuy , kdy , k`y, kny } 2 2Z, we arrive at two constraints:

kQ + kU,D + kHiggs = even , kL + kE,N + kHiggs = even . (2.18)

It turns out that there are 8 possible charge assignments in the MSSM with �N modular
symmetries. In each assignment, we present the allowed baryon- and/or lepton-number
violating terms in Table 2. Here, we deal with the baryon- and/or lepton-number violating
operators for the superpotential:
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kuy � kQ � kU,D � kHiggs = 0 , kdy � kQ � kU,D � kHiggs = 0 , k`y � kL � kE,N � kHiggs = 0 ,

kny � kL � kE,N � kHiggs = 0 , km � 2kN = 0, kµ � 2kHiggs = 0 , (2.17)

where the last two equations have trivial solutions due to {kµ, km} 2 2Z. Taking into
account {kuy , kdy , k`y, kny } 2 2Z, we arrive at two constraints:

kQ + kU,D + kHiggs = even , kL + kE,N + kHiggs = even . (2.18)

It turns out that there are 8 possible charge assignments in the MSSM with �N modular
symmetries. In each assignment, we present the allowed baryon- and/or lepton-number
violating terms in Table 2. Here, we deal with the baryon- and/or lepton-number violating
operators for the superpotential:

[LHu]F , [LLĒ]F , [LQD̄]F , [ŪD̄D̄]F ,

[QQQL]F , [Ū ŪD̄Ē]F , [QQQHd]F , [QŪĒHd]F , [LHuLHu]F , [LHuHdHu]F ,

(2.19)

and the Kähler potential:

[ŪD̄⇤Ē]D , [H⇤
uHdĒ]D , [QŪL⇤]D , [QQD̄⇤]D , (2.20)

where |F,D means the F - and D-components of corresponding chiral superfields, respec-
tively. Note that couplings in the superpotential (2.19) should be described by holomorphic
modular forms with even modular weights, but those in the Kähler potential (2.20) will
be invariant under the modular symmetry by the factor (i(⌧̄ � ⌧))�k and holomorphic
(anti-holomorphic) modular forms with even modular weights Y (⌧) (Y (⌧)⇤), i.e.,

�K = Y (⌧)IJY (⌧)⇤K
�I�J�⇤

K

(i(⌧̄ � ⌧))k
. (2.21)

Here, modular weights of {Y (⌧)IJ , Y (⌧)⇤
K
,�I ,�J ,�⇤

K
} are represented as

{kYIJ , kYK ,�kI ,�kJ ,�kK} , (2.22)

respectively, and k is properly chosen to make �K modular invariant. When they transform
under the modular symmetry, the induced automorphy factors

(c⌧ + d)kYIJ (c⌧̄ + d)kYK |c⌧ + d|2k(c⌧ + d)�kI (c⌧ + d)�kJ (c⌧̄ + d)�kK

= (c⌧ + d)k+kYIJ
�kI�kJ (c⌧̄ + d)k+kYK

�kK (2.23)

vanish when

k = �kYIJ + kI + kJ ,

k = �kYK + kK . (2.24)
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holomorphic modular forms of even modular weight 

modular invariance

・ In SUSY models with modular symmetry
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(iii) Baryon/Lepton-number violating operators(1/2)

𝜏 → 𝛾𝜏 =
𝑝𝜏 + 𝑞
𝑠𝜏 + 𝑡

𝜙𝑖 → 𝑠𝜏 + 𝑡 −𝑘𝑖𝜌𝑖(𝛾)𝜙𝑖


𝑛

𝑌𝑖1…𝑖𝑛(𝜏) 𝜙𝑖1 ⋯𝜙𝑖𝑛

・ Modular invariance requires
modular weight ： 𝑘𝑌 = σ𝑖 𝑘𝑖

Matters 𝜙𝑖：

Yukawa/Higher-dim.：

Modular trf.：

（Modular wegiths (𝑘𝑖)）
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arrive at two constraints :



✔ : ;= +;> +;? =8@8A+BCC+BCC=8@8A 

　　　× : ;D +;? +;? =BCC+BCC+BCC=BCC 

(i) (ii) (iii) (iv)

Yukawa X X X X

HuHd X X X X

LHu X X

LLĒ X X

LQD̄ X X

ŪD̄D̄ X X

QQQL X X

Ū ŪD̄Ē X X

QQQHd X X

QŪĒHd X X

LHuLHu X X X X

LHuHdHu X X

ŪD̄⇤Ē X X

Hu
⇤HdĒ X X

QŪL⇤ X X

QQD̄⇤ X X

Table 2. The symbol X stand for possible operators on a given model. As explained in the text,
(ii), (iii), and (iv) cases have the Z2-generalized baryon parity, the Z2-generalized lepton parity,
and R-parity, respectively.

Finally, we discuss anomalies. Anomalies of modular symmetries were studied in
Refs. [76, 77]. Here, we focus on the Z2 symmetry. In general, the ZN symmetry is
anomaly-free for mixed anomalies with the gauge symmetry G if the following condition is
satisfied [78],

2

N

X

Ri

qiT (Ri) = integer , (2.30)

where qi is ZN charge of matter fields, and Ri and T (Ri) denote representations of matter
fields under G and its Dynkin indexes, respectively. We normalize T (R) = 1/2 for the
fundamental representation of SU(N). In the above assignments, all of quarks have the
same Z2 charge, i.e., either even or odd. Thus, all of the above assignments are anomaly-free
for Z2�SU(3)�SU(3) mixed anomalies. Similarly, the quark doublets and lepton doublets
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Baryon/Lepton-number violating operators 

When  is even weightkHiggs

B and/or L violating operator

(i) Others are even     

(ii) ;>, ;D,? is odd, ;=, ;E,F is even                         

(iii);>, ;D,? is even, ;=, ;E,F is odd 

(iv) Others are odd

Thus, we obtain

kI + kJ � kK = even . (2.25)

Note that {kYIJ , kYK} are even numbers, and we call modular weights of operators, including
the holomorphic and anti-holomorphic quantities (�I�J�⇤

K
), kI + kJ � kK in the following

analysis.
We classify these operators for total 8 cases with an emphasis on the discrete symmetry.

(i) (kQ, kU,D, kL, kE,N , kHiggs) = (even, even, even, even, even) ,

Since all particles have Z2 even charges, all operators are allowed.

(ii) (kQ, kU,D, kL, kE,N , kHiggs) = (odd, odd, even, even, even) ,

Here, we assign the Z2 odd charges for quarks and even charges for leptons and Higgs.
Therefore, the Z2 symmetry (�1)kquark is nothing but the Z2-generalized baryon par-
ity [4] as confirmed in allowed operators in Table 2. Since only the lepton-number
violating operators are allowed, some proton decay operators are suppressed.

(iii) (kQ, kU,D, kL, kE,N , kHiggs) = (even, even, odd, odd, even) ,

In contrast to case (ii), we assign the Z2 odd charges for leptons and even charges
for quarks and Higgs. Therefore, the Z2 symmetry (�1)klepton corresponds to the Z2-
generalized lepton parity [4] as confirmed in allowed operators in Table 2. Since only
the baryon-number violating operators are allowed, some proton decay operators are
suppressed.

(iv) (kQ, kU,D, kL, kE,N , kHiggs) = (odd, odd, odd, odd, even) ,

It is remarkable that the charge assignment (iv) leads to the R-parity in the effective
action of �N modular flavor models. Indeed, let us consider the linear combination of
two Z2 symmetries: (�1)k+F , where k and F stand for the modular weight of fields
and fermion number. Interestingly, the SM particles and their sparticles have the
following Z2 charges in agreement with the R-parity:

SM particles (�1)k+F Sparticles (�1)k+F

Gauge bosons even Gauginos odd
Quarks and Leptons even Squarks and Sleptons odd

Higgs even Higgsino odd

Table 1. Charge assignments (�1)k+F for MSSM fields.

Thus, the R-parity protects not only the absence of some baryon- and/or lepton-
number violating operators but also the decay of sparticles. The stability of dark
matter is ensured under the R-parity. Since the Higgs fields have the Z2 even charge,
the R-parity is not broken by the Higgs mechanism.
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Higher-dim. ops. : even-modular weights
→ operator with even-modular weights : ✔ 

→L breaking 

→B breaking 

→Realization of R-parity(Z2 sym) 
Possible in SU(5), SO(10) GUTs 

→B/L breaking

→B/L breaking are prohibited 



Summary

We discuss pheno aspects from Modular flavor symmetry 

  to other flavor phenomena in the quark sector
          b→sɤ … 

Approach to other models with S4, A5 ... 

- with SMEFT,  predict Lepton flavor observables
- Baryon/Lepton-number violating operator can be controlled with 
modular weight

Flavor puzzle (mass and mixing in quark and lepton) might be controlled 
by flavor symmetry

→ Modular flavor symmetry

Modular symmetry 

Discrete symmetry  Modular symmetry ≃


