

Cristina Lazzeroni (University of Birmingham)

MITP Seminar Open Questions and Future Directions in Flavour Physics November 2024

Kaons: flavour physics laboratory@ CERN SPS

The quintessential precision frontier experiments: few decay modes, simple final states, large statistics.

Sensitive probes of new physics:

Sensitivity to new physics

20

20

Simplified Z,Z' models [JHEP 1511 (2015) 1661 Littlest Higgs with T-parity [EPJ C76 (2016 Custodial Randall-Sundrum [JHEP 0903 (20 MSSM non-MFV [PEPT 2016 123B02, JHEP LVF models [Eur Phys J C (2017) 77]

Models with CKM-like

flavor structure

Kaon rare decays

CERN: NA62 (K⁺), LHCb (K_S)

JPARC: KOTO, KOTO-II (K_L)

The NA62 experiment

Fixed-target experiment @ CERN North Area 400 GeV proton SPS beam

 $_{t.}) \times 10^{-11}$ Broad physics program: LFV/LNV

Main aim: measure $Br(K^+ \rightarrow \pi^+ \nu \nu)$ with decay-in-flight technique

Broad physics programme:

- Kaon rare decays
- Searches for LFV/LNV
- Precision measurements
- Exotic searches

Timeline:

- 2016-2018: Run1 (2.2 10¹⁸ POT), first observation of $Br(K^+ \to \pi^+ \nu \nu)$
- 2021-LHC Long Shutdown 3: Run2 with improved detector

The NA62 beam and detector

Un-separated hadron beam: find K⁺ Boosted kaons (75 GeV)

- Match K^+ and π^+ in time & form vertex. • Determine $m_{miss}^2 = (P_K - P_\pi)^2$
- Tag K^+ and measure momentum.
- Identify π^+ and measure momentum.
- Match K^+ and π^+ in time & form vertex.
- Determine $m_{miss}^2 = (P_K P_\pi)^2$
- Reject **any** additional activity.
- $\overrightarrow{r}_{miss} = (P_{K^{+}} P_{\pi^{+}})^{2}$ Strategy: $P_{\pi^{+}}$ $K^{+} \text{ and } measure momentum. --- ntify \pi^{+} \text{ and measure momentum. } P_{\nu}$ $cch K^{+} \text{ and } \pi^{+} \text{ in time } \text{ form vertex!} \nu$ $etermine m_{miss}^{2} = (P_{K} P_{\pi})^{2} P_{\nu}$

- > 10^7 rejection of π^0 from $K^+ \to \pi^+ \pi^0$ decays

NA62 Performance Keystones:

• $\mathcal{O}(100) \, ps$ timing between detectors

• $\mathcal{O}(10^4)$ backgroun Decay mode	d suppression from kinemati Branching Ratio [PDG]
• > $\mathbf{A} \boldsymbol{\theta}'_{-} \boldsymbol{\eta}_{\mu} \boldsymbol{\eta}_{\mu}$ rejection	tion $(63.56 \pm 0.11)\%$
• > 10^{7} rejection c	f π^0 from $K^{\pm0.08}\pi^{st}\pi^0$ deca
$K^+ \to \pi^+ \pi^+ \pi^-$	$(5.583 \pm 0.024)\%$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-5}$

Decay mode		Branching Ratio [PDG]		

- $\mathcal{O}(100) \, ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- $> 10^7$ muon rejection
- $> 10^7$ rejection of π^0 from $K^+ \to \pi^+ \pi^0$ decays
- ec**Extreme** challenge but... few decay modes, simple final states, large statistics. Maximum use of data for bckg evaluation

Search for $K^+ \rightarrow \pi^+ X_{inv}$

By-product of $K^+ \rightarrow \pi^+ \nu \nu$ analysis Peak search in **R1** ($0 \le m_x \le 110 \text{ MeV/c}^2$) and **R2** ($154 \le m_X \le 260 \text{ MeV/c}^2$) Acceptance scan over m_x and τ_x Main background: $K^+ \rightarrow \pi^+ \nu \nu$

Squared missing mass (2018 data)

🕂 Data

 $K^+ \rightarrow \mu^+ \nu(\gamma)$

 $K^+ \rightarrow \pi^+ \pi^0$

 $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

Upstream

Region 2

0.04

Model

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

 $K^+ \rightarrow \pi^+ \pi^0 \gamma$

 $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$

Total background

0.06

 $K^+ \rightarrow \mu^+ \nu, \ \mu^+ \rightarrow e^+$

Region 7

Entries / (0.001 GeV²/c⁴

10³

10²

10

1

 10^{-1}

 10^{-2}

Interpretation of $K^+ \to \pi^+ X$

Limits on BRs for $K^+ \rightarrow \pi^+ X_{inv}$, $K^+ \rightarrow \pi^+ \pi^0_{inv}$, $K^+ \rightarrow \pi^+ X(X \rightarrow \gamma \gamma)$ translate to parameter space for hidden-sector portals

[BC models within the Physics Beyond Colliders framework]

Upgrading NA62

2016–18 analysis proved NA62 technique.

Limitation: tight cuts to reject backgrounds \Rightarrow reduces signal efficiency.

To improve: need new tools to control background.

• To improve decements to control baskergrund. Background

VC KTAG L

2021-2022 detector improvements

Additional **GTK** station

Beam line rearranging to swipe away upstream π^+

VetoCounter to detect upstream decays

ANTIO to veto accidental particles

HASC-2 to further suppress $K^+ \rightarrow \pi^+\pi^0$ decays

Intensity increased from 60% to 100% of nominal

Data taking pushing to the hardware limit of intensity for NA62

 0^{-}

Number of expected SM events: $\mathscr{B}^{SM} = 8.4 \times 10^{-11}$

(For comparison to previous results use $\mathscr{B}_{\pi\nu\bar{\nu}}^{SM} = 8.4 \times 10^{-11}$ [JHEP 11 (2015) 166], but results are independent of this choice) $\mathscr{B}_{\pi\nu\bar{\nu}}^{SM} = 8.4 \times 10^{-11}$ $\mathscr{B}^{SM}_{\pi\nu\bar{\nu}}$

Single-event sensitivity (2021-2022 data)

SM,exp πν⊽

With respect to 2018 analysis:

Background evaluation (2021-2022 data)

Backgrounds: kaon decays (2021-2022 data)

Backgrounds: upstream (2021-2022 data)

events

of

Probability to pass $K^+ - \pi^+$ matching

 $(\Delta T_{\perp}, N_{CTK})$ Upstream reference sample contains all known upstream mechanisms.

• N provides normalisation.

 f_{CDA} depends only on geometry. P_{match} depends on $(\Delta T_+, N_{GTK})$.

(Time matching, intensity/pileup estimator) K^+ _+

N_{bo}(Upstream)

Invert & loosen upstream vetos to enrich with different mechanisms:

- Interaction-enriched: Val1,2,7,8
- Accidental-enriched: Val3,4,5,6,9,10 Number
- All independent.

match

0.5 Arbitrary units Kaon decays 0.45 Pileup 0.4 N0.35 *f_{cda}* 0.3 $P^{K}(CDA)$ **P**_{match} 0.25 25 N^{01K} 0.2 0.15 20 $P^{P}(CDA)$ 0.1 0.05 15 5 10 15 20 25 30 CDA [mm] 10 Expected + Observed events 0 0.05 **b** 10² K) Number 10 10² Val1 Val2 Val3 Val4 Val7 Val8 Val9 Val5 Val6

Background evaluation (2021-22 data)

Sensitivity for BR $\sim \sqrt{S+B}/S = 0.5$

• Similar but improved with respect to 2018 analysis for same amount of data.

Signal regions (2021-22 data)

2021 – 22 data

Expected SM signal: $N_{\pi\nu\overline{\nu}}^{SM} \approx 10$ Expected background: $N_{bg} = 11.0^{+2.1}_{-1.9}$ Observed: $N_{obs} = 31$

 $\mathcal{B}_{21-22}(K^+ \to \pi^+ \nu \overline{\nu}) = (16.0^{+5.0}_{-4.5}) \times 10^{-11} = (16.0 \ (^{+4.8}_{-4.2})_{stat} \ (^{+1.4}_{-1.3})_{syst}) \times 10^{-11}$

Combining NA62 results: 2016-22

Integrating 2016–22 data: $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$

$K^+ \rightarrow \pi^+ v v$ result in context

40% to 25%

Implications of $K^+ \rightarrow \pi^+ v v$

KOTO preliminary: [Eur.Phys.J.C 84 (2024) 4, 377] O limit) OTO direct exclusion @ 90% CL s, Buttazzo, Knegjens Fractional uncertainty: 25% JHEP 1511 Still consistent with SM Grossman-Nir bound Need full-NA62 data-set to-clarify SM tension Δ_L or Δ_R only: ____<u>S</u>M [EPJC 82 (2022) 7, 615] $|\epsilon_K|^{\text{NP}} \propto \text{Im } \Delta_{L(R)}^2 / M_{Z^{(l)}}^2$ SM [JHEP 09 (2022) 148] eral NP $\propto \frac{|\Delta_L + \Delta_R| \times |\Delta_L|}{|\Delta_L|}$ 0.500.751.001.251.501.752.002.252.50 $\times 10^{-10}$ $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ 15 20 30 $BR(K^+ \rightarrow \pi^+ v \bar{v}) \times 10^{11}$

 $\mathcal{2}\sigma \operatorname{range}: [7.4 - 19.7] \times 10^{-11} \quad \mathscr{B}^{16-22}_{\pi\nu\bar{\nu}} = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$

0

 10^{-11}

0.50

$$\rightarrow \pi^+ \nu_i \nu_j) = 10^{-10} \left(\frac{19.2 \text{ TeV}}{\Lambda_{ijsd}} \right)^6 \operatorname{Rem}_{\mathrm{LNV}}(K_L \rightarrow \pi^0 \nu_i \nu_j) = 10^{-10} \left(\frac{24.9 \text{ TeV}}{\Lambda_{ijsd}} \right)^6$$

Kaon decays induced by scalar or tensor BSM operators

 $BR(K \to \pi \nu \bar{\nu}) = BR_{SM}(K \to \pi \nu \bar{\nu}) + \sum_{\substack{i \leq j \\ i \leq j}}^{S} BR_{LNV}(K \to \pi \nu_i \nu_j)$ $\mathscr{B}(K^+ \to \pi^+ \nu \hat{\nu}) = J_V^{K^+} f_V^{K^+} + J_S^{K^+} f_S^{K^+} + J_T^{K^+} f_T^{K^+} \qquad \mathsf{J=current},$ $\mathscr{B}(K_L \to \pi^+ \nu \bar{\nu}) = J_V^{K_L} f_V^{K_L} + J_V^{K_L} f_S^{K_L} + J_T^{K^+} f_T^{K_L} \qquad \mathsf{f Wilson coeff}$

[JHEP 12 (2020)186, arXiv:2405.06742, Eur. Phys. J. C (2024) 84: 680]

40 20

0.02

0

10

20

30

50 60

40

70

 π^+ momentum [GeV/c]

80

Probing 3-generation BSM

EFT with dimension-six semileptonic operators built in terms of SM fields.

Minimally-broken $U(2)^5$ flavor symmetry acting on the lightest two SM families.

Reduce the number of relevant operators to 5

$$B(K^+ \to \pi^+ \nu \nu) = (12.3 \pm 3.2) \times 10^{-11}$$

[Allwicher, Bordone, Isidori, Piazza, Stanzione, doi.org/10.48550/arXiv.2410.21444]

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})^{\text{SM}} = (8.09 \pm 0.63) \times 10^{-11}$$
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})^{\text{SM}} = (2.58 \pm 0.30) \times 10^{-11}$$
(for comparison)

$$B(K_L \to \pi^0 \nu \nu) = (6.7 \pm 2.2) \times 10^{-11}$$

NA62:
$$K^+ \to \pi^+ \mu^+ \mu^-$$

FCNC decay, long-distance mediated by photon exchange Together with electron channel tests LFU

NA62:
$$K^+ \to \pi^+ \mu^+ \mu^-$$

Measurement	$K_{\pi\mu\mu}$ candidates	$\mathcal{B}_{\pi\mu\mu} imes 10^8$
E787 [8]	207	$5.0 \pm 0.4_{\rm stat} \pm 0.7_{\rm syst} \pm 0.6_{\rm ext} = 5.0 \pm 1.0$
E865 [9]	430	$9.22 \pm 0.60_{\text{stat}} \pm 0.49_{\text{syst}} = 9.22 \pm 0.77$
HyperCP [10]	110	9.8 $\pm 1.0_{\rm stat} \pm 0.5_{\rm syst} = 9.8 \pm 1.1$
NA48/2 [11]	3120	$9.62 \pm 0.21_{\rm stat} \pm 0.11_{\rm syst} \pm 0.07_{\rm ext} = 9.62 \pm 0.25$
NA62, this result	27679	$9.15 \pm 0.06_{\mathrm{stat}} \pm 0.03_{\mathrm{syst}} \pm 0.04_{\mathrm{ext}} = 9.15 \pm 0.08$

Table 2. Comparison with the previous measurements of the $K_{\pi\mu\mu}$ branching fraction.

Measurement	Signal candidates	a_+	b_+	$ ho(a_+,b_+)$
E865, $K_{\pi ee}$ [14]	10300	-0.587 ± 0.010	-0.655 ± 0.044	
NA48/2, $K_{\pi ee}$ [15]	7253	-0.578 ± 0.016	-0.779 ± 0.066	-0.913
NA48/2, $K_{\pi\mu\mu}$ [11]	3120	-0.575 ± 0.039	-0.813 ± 0.145	-0.976
NA62, $K_{\pi\mu\mu}$, this result	27679	-0.575 ± 0.013	-0.722 ± 0.043	-0.972

Table 3. Comparison with the previous measurements of the $K^{\pm} \to \pi^{\pm} \ell^{+} \ell^{-}$ form factor parameters. The E865 $K_{\pi ee}$ measurement [14] does not provide the systematic uncertainties, nor the correlation coefficient of the form factor parameters.

A lot more data available, and coming.

Uncertainties are stat-related

Also, electron channel to come

$$W(z) = G_F M_K^2(a + bz) + W^{\pi\pi}(z)$$

 $z = m(\mu^+\mu^-)^2/M_K^2$

	δa_+	δb_+	$\delta \mathcal{B}_{\pi\mu\mu} imes 10^8$	$\delta A_{ m FB} imes 10^2$
Statistical uncertainty	0.012	0.040	0.06	0.7
Trigger efficiency	0.002	0.008	0.02	0.1
Reconstruction and particle identification	0.002	0.007	0.02	0.1
Size of the simulated $K_{\pi\mu\mu}$ sample	0.002	0.007	0.01	0.1
Beam and accidental activity simulation	0.001	0.002	0.01	
Background	0.001	0.001		
Total systematic uncertainty	0.003	0.013	0.03	0.2
$K_{3\pi}$ branching fraction	0.001	0.003	0.04	
$K_{\pi\mu\mu}$ radiative corrections	0.003	0.009	0.01	0.2
Parameters α_+ and β_+	0.001	0.006		
Total external uncertainty	0.003	0.011	0.04	0.2
Total uncertainty	0.013	0.043	0.08	0.7

 Table 1. Summary of uncertainties.

$$a_{+}^{\mu\mu} - a_{+}^{ee} = -\sqrt{2} \operatorname{Re} \left[V_{td} V_{ts}^{*} (C_{9}^{\mu} - C_{9}^{e}) \right]$$

-0.5 Form factor parameter b. NA62 (πuu) 68% CL contours: NA62 (πμμ) --- NA48/2 (πμμ) -0.6 - NA48/2 (πee) E865 (*nee*) (stat. only) -0.7 -0.8-0.9 $a_{+} = -0.575 \pm 0.013$ $b_{+} = -0.722 \pm 0.043$ -0.64 -0.62 -0.6 -0.58 -0.56 -0.54 -0.52 -0.5 Form factor parameter a_+

[doi:10.1007/JHEP11(2022)011]

Sensitive to LFUV in SD contributions

[PRD93 (2016) 074038]

Kaons at JPARC

KEK, NDA, Osaka, Yamagata, Jeonbuk, Korea, Pusan, NTU, Chicago

30 GeV proton from Main Ring of J-PARC Slow extraction : 2-s spill / 4.2-s cycle Beam power : 82 kW as of June 2024

- T1 target at Hadron experimental facility
- Beam extraction angle : 16°
- 20-m beamline + KOTO Detector

KOTO concept

Key points of KOTO experiment:

K_L pencil beam, only K_L direction known

 → only PT information can be used (to reject K_L→γγ)
 Z_{vtx} reconstructed assuming 2 clusters from π⁰ decay
 Charged and photon vetoes to reject background

KOTO result of 2021 data analysis

We will submit the paper on this result soon.

Obtained the world best limit.

KEK, NDA, Osaka, Yamagata, Jeonbuk, Korea, Pusan, NTU, Chicago

 $N_{\text{observed}} = 0$

Aim to reach SM sensitivity by 2027

Rare kaon decays after 2030

JPARC: KOTO-II (K_L)

KOTO-II and Extension of J-PARC hadron hall

Prospects for $K^0 \rightarrow \pi^0 v v$

KEK, NDA, Osaka, Yamagata, Jeonbuk, Korea, Pusan, NTU, Chicago

Aim to collect O(50) with B/S=1 events in 2030s

 $K_I \rightarrow \pi^0 \ell^+ \ell^-$

Contributions from long-distance physics

- SD CPV amplitude: γ/Z exchange
- LD CPC amplitude from 2γ exchange
- LD indirect CPV amplitude: $K_I \rightarrow K_S$
- $K_s \rightarrow \pi^0 \ell^+ \ell^-$ will help reducing theoretical uncertainties, measure $|a_s|$
 - measured NA48/1 with limited statistics
 - planned by LHCb Upgrade
- $K_I \rightarrow \pi^0 \ell^+ \ell^-$ can be used to explore helicity suppression in FCNC decays, give unique access to SD BSM effects in the photon coupling via the tau loop

arXiv:hep-ph/0404127,arXiv:hpe-ph/0404136, arXiv:hep-ph/0606081] IarXiv:0705.2025. arXiv:1812.00735. arXiv:1906.03046. https://indico.cern.ch/event/1196830/]

Im $(\bar{\rho}, \bar{\eta})$ $\mathsf{BR}(K_L o \pi^0 v \overline{v})$ BR(K+ T+VI) $K_I \rightarrow \pi^0 \ell^+ \ell^- \text{ CPV}$ 1 $\mathsf{BR}_{\mathsf{SD}}(K_L)$ constrains UT n Re $\mathsf{BR}_{\mathsf{SD}}(K_I \to \mu^+ \mu^-)$ charm

$$\mathcal{B}(K_L \to \pi^0 e^+ e^-) = 3.54^{+0.98}_{-0.85} \left(1.56^{+0.62}_{-0.49} \right) \times 10^{-11}$$
$$\mathcal{B}(K_L \to \pi^0 \mu^+ \mu^-) = 1.41^{+0.28}_{-0.26} \left(0.95^{+0.22}_{-0.21} \right) \times 10^{-11}$$

(2 sets of values corresponding to constructive (destructive) interference btw direct and indirect CP-violating contributions)

Experimental bounds $BR(K_I \rightarrow \pi^0 e^+ e^-) < 28 \times 10^{-11}$ from KTeV: $BR(K_L \rightarrow \pi^0 \mu^+ \mu^-) < 38 \times 10^{-11}$

amplitude

Main background: $K_L \rightarrow \ell^+ \ell^- \gamma \gamma$

• Like $K_L \rightarrow \ell^+ \ell^- \gamma$ with hard bremsstrahlung

 $BR(K_L \rightarrow e^+ e^- \gamma \gamma) = (6.0 \pm 0.3) \times 10^{-7} \quad E_{\gamma}^* > 5 \text{ MeV}$ $BR(K_L \rightarrow \mu^+ \mu^- \gamma \gamma) = 10^{+8}_{-6} \times 10^{-9}$ $m_{\nu\nu} > 1 \text{ MeV}$

Phys. Rev. Lett. 93 (2004) 021805 Phys. Rev. Lett. 84 (2000) 5279-5282

 $K_I \rightarrow \pi^0 \ell^+ \ell^-$

[D'Ambrosio, Iyer, Mahmoudi, Neshatpour 2206.14748, 2311.04878, 2404.03643]

Access to photon coupling Can be used to explore helicity suppression in FCNC decays, give unique access to SD BSM effects in γ coupling via τ loop

Lepton Flavour Universality Violation:

$$\delta C_L^\ell \equiv \delta C_9^\ell = -\delta C_{10}^\ell \qquad \delta C_L^e \neq \delta C_L^\mu = \delta C_L^\tau$$

Projection A

Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II

Projection B

All measurements give current best-fit point with target precision of KOTO-II

Bounds from individual observables:

Coloured regions: 68% CL measurements Dashed lines: 90% upper limits

Summary_{$K^+ \rightarrow \pi^+ \nu \bar{\nu}$}

Kaon physics: sensitive probe to both "heavy" and "light" new physics $N_{bg} = 11.0^{+2.1}_{-1.9}$ $N_{obs} = 31$

Heavy New Physics probed via flavour physics observables Light New Physics probed via production searches in K decays

NA62/p ew et sult, on 2016-22 data:

 $\mathscr{B}_{16-22}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.3}_{-2.9}) \times 10^{-11} = (13.0 \left(\begin{smallmatrix} +3.0\\ -2.7 \end{smallmatrix}\right)_{\mathsf{stat}} \begin{bmatrix} +1.3\\ -1.2 \end{bmatrix}_{\mathsf{syst}}) \times 10^{-11}$

First observation of this decay (significance > 5 σ) Rarest particle decay ever observed !

NA62 will continue to take data until LS3: large stat will also more investigations

2023-LS3 data-set collection & analysis in progress...

KOTO-II, the successor to KOTO, aims at first observation of $K_L \rightarrow \pi^0 v v$ by 2030s.

Increasingly important to combine K^+ and K_L measurements, and with other flavour measurements

Additional material

Other LFV / LNV results

LFV/LNV K⁺ and π^0 decays, NA62 Run1

NA62: UL on BRs of LNV/LFV K⁺ and π^0 decays ~ O(10⁻⁹-10⁻¹¹)