New Physics Through Flavor Tagging at FCC-ee

Based on: 2411.02485 with Hector Tiblom & Alessandro Valenti and references there

Admir Greljo

06.11.2024, Open Questions and Future Directions in Flavour Physics, Mainz

Motivation

LEP

• Expedition to multi-TeV scale

 $m_W^2/m_*^2 \sim 10^{-3}$

• Examination of the EW scale

Quantum corrections \sim 1-loop EW

FCC-ee

- Expedition to multi-10 TeV scale $m_W^2/m_*^2 \sim 10^{-5}$
- Examination of multi-TeV scale

Access to broader BSM through quantum corrections

E.g. <u>Right-handed top compositeness</u>

• Consolidation of the EW scale

 \sim 2-loop EW

Motivation

The baseline FCC-ee operation plan

Working point	Z, years 1-2	Z, later	WW	HZ	$t\overline{t}$		(s-channel H)
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 163	240	340-350	365	m_{H}
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)
$Lumi/year (ab^{-1}, 2 \text{ IP})$	24	48	6	1.7	0.2	0.34	(7)
Physics Goal (ab^{-1})	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
				10^6 HZ	10 ⁶ 1	$\overline{\mathbf{t}}$	
Number of events	5×10^{1}	2 Z	10^8 WW	+	+200k	HZ	(6000)
				$25k~WW \to H$	$+50\mathrm{kWV}$	$\mathrm{V} \rightarrow \mathrm{H}$	

Blondel, Janot; 2106.13885

The Scope

- Physics focus: **New 4F contact interactions**!
- Three reference energies > Z: WW (163 GeV, 10 ab⁻¹), Zh (240 GeV, 5 ab⁻¹), $t\bar{t}$ (365 GeV, 1.5 ab⁻¹)
- Processes: $e^+e^- \rightarrow b\bar{b}, c\bar{c}, s\bar{s}, jj, t\bar{t}, \tau^+\tau^-, \mu^+\mu^-, e^+e^-$
- Statistical precision > Z is $10^{-4} 10^{-3}$
- Theoretically clean observables: Sensitive to BSM & Experimentally accessible

Interference with the Z resonance

$$\begin{aligned} \mathscr{L}_{\text{SMEFT}} &= \mathscr{L}_{\text{SM}} + \sum_{\mathcal{O}} C_{\mathcal{O}} \mathcal{O}_{4F} \\ \swarrow & \swarrow \\ \sigma_{Z} \sim \frac{s}{(s - M_{z}^{2})^{2} + M_{z}^{2} \Gamma_{z}^{2}} & \frac{\sigma_{\mathcal{O}}}{\sigma_{Z}} \sim C_{\mathcal{O}} \left(s - M_{z}^{2}\right) \\ s &= (p_{f} + p_{\bar{f}})^{2} \end{aligned}$$

<u>Two strategies</u>:

- I. Near the Z-pole ±5 GeV: (Ge et al, 2410.17605) Larger statistics but smaller relative effect. Limited by theoretical uncertainty.
- 2. At $WW, Zh, t\bar{t}$ (our work)

Smaller statistics but larger relative effect. Theory OK-ish.

Comparing our results with 2410.17605, method (2) <u>stronger limits</u> on C_{O} Even statistically!

Observables

 $\sqrt{s'} > 0.85\sqrt{s}$

• (Inclusive, non-radiative) cross-section ratios

$$R_b = \frac{\sigma(e^+e^- \to b\bar{b})}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- \to q\bar{q})}$$

- Theoretically clean $\Delta R_b^Z/R_b^Z \sim 10^{-4} \ {\rm PDG} \ {\rm EW} \ {\rm review}$
- Experimentally, however, **flavor tagging** is crucial!
- <u>Question</u>:

What are the FCC-ee projections on R_q ratios given the current state-of-the-art flavor taggers?

<u>Statistical model</u>: Simplified scenario, R_b only $R_b = \frac{\sigma(e^+e^- \to b\bar{b})}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- \to q\bar{q})}$

$$N_{\rm tot} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+ e^- \to q\bar{q})$$

Total # of (hard) dijet events before flavor tagging

For simplicity, assume two quark flavors: j and b. Run b-tagger on each jet.

- ϵ_b^b (true positive) **TP**
- ϵ_j^b (false positive) **FP**

<u>Statistical model</u>: Simplified scenario, R_b only $R_b = \frac{\sigma(e^+e^- \to bb)}{\sum_{q=u.d.s.c.b} \sigma(e^+e^- \to q\bar{q})}$

$$N_{\rm tot} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+ e^- \to q\bar{q})$$

Total # of (hard) dijet events before flavor tagging

For simplicity, assume two quark flavors: j and b. Run b-tagger on each jet.

- ϵ_b^b (true positive) **TP**
- ϵ_j^b (false positive) **FP**

$$N(n_b = 2) \equiv N_2 = N_{\text{tot}} [(\epsilon_b^b)^2 R_b + (\epsilon_j^b)^2 R_j],$$

$$N(n_b = 1) \equiv N_1 = 2N_{\text{tot}} [\epsilon_b^b (1 - \epsilon_b^b) R_b + \epsilon_j^b (1 - \epsilon_j^b) R_j]$$

$$N(n_b = 0) \equiv N_0 = N_{\text{tot}} [(1 - \epsilon_b^b)^2 R_b + (1 - \epsilon_j^b)^2 R_j].$$

<u>Statistical model</u>: Simplified scenario, R_b only $R_b = \frac{\sigma(e^+e^- \to bb)}{\sum_{q=u.d.s.c.b} \sigma(e^+e^- \to q\bar{q})}$

$$N_{\rm tot} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+ e^- \to q\bar{q})$$

Total # of (hard) dijet events before flavor tagging

For simplicity, assume two quark flavors: j and b. Run b-tagger on each jet.

- ϵ_b^b (true positive) **TP**
- ϵ_j^b (false positive) **FP**

$$N(n_b = 2) \equiv N_2 = N_{\text{tot}} [(\epsilon_b^b)^2 R_b + (\epsilon_j^b)^2 R_j],$$

$$N(n_b = 1) \equiv N_1 = 2N_{\text{tot}} [\epsilon_b^b (1 - \epsilon_b^b) R_b + \epsilon_j^b (1 - \epsilon_j^b) R_j]$$

$$N(n_b = 0) \equiv N_0 = N_{\text{tot}} [(1 - \epsilon_b^b)^2 R_b + (1 - \epsilon_j^b)^2 R_j].$$

$$-2\log L = \sum_{i} \frac{(N_i^{\exp} - N_i)^2}{N_i^{\exp}} + \frac{x^2}{(\delta_{\epsilon})^2},$$

• Fit parameters: $N_{\mathrm{tot}}, \epsilon^b_b, R_b, \epsilon^b_j$

$$\epsilon^b_j \to \epsilon^b_j (1+x)$$

• MC input systematics δ_ϵ

<u>Statistical model</u>: Simplified scenario, R_b only $R_b = \frac{\sigma(e^+e^- \to bb)}{\sum_{a=u,d,s,c,b} \sigma(e^+e^- \to q\bar{q})}$

 $N_{\rm tot} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+ e^- \to q\bar{q})$

Total # of (hard) dijet events before flavor tagging

For simplicity, assume two quark flavors: j and b. Run b-tagger on each jet.

- ϵ_b^b (true positive) **TP**
- ϵ_j^b (false positive) **FP**

$$N(n_b = 2) \equiv N_2 = N_{\text{tot}} [(\epsilon_b^b)^2 R_b + (\epsilon_j^b)^2 R_j],$$

$$N(n_b = 1) \equiv N_1 = 2N_{\text{tot}} [\epsilon_b^b (1 - \epsilon_b^b) R_b + \epsilon_j^b (1 - \epsilon_j^b) R_j]$$

$$N(n_b = 0) \equiv N_0 = N_{\text{tot}} [(1 - \epsilon_b^b)^2 R_b + (1 - \epsilon_j^b)^2 R_j].$$

$$-2\log L = \sum_{i} \frac{(N_i^{\exp} - N_i)^2}{N_i^{\exp}} + \frac{x^2}{(\delta_{\epsilon})^2},$$

• Fit parameters: $N_{ ext{tot}}, \epsilon^b_b, R_b, \epsilon^b_j$

$$\epsilon^b_j \to \epsilon^b_j (1+x)$$

- MC input systematics δ_{ϵ}

$$\left(\frac{\Delta R_{b}}{R_{b}}\right)^{2} = \frac{1 - \epsilon_{b}^{b}(2 - \epsilon_{b}^{b}(2 - R_{b}))}{N_{\text{tot}}R_{b}(\epsilon_{b}^{b})^{2}} \qquad \text{FP stat} \\ + \frac{2(\epsilon_{b}^{b} - R_{b}(2 - \epsilon_{b}^{b})(2\epsilon_{b}^{b} - 1))}{N_{\text{tot}}R_{b}^{2}(\epsilon_{b}^{b})^{3}} \epsilon_{j}^{b} \qquad \text{FP stat} \\ + \frac{4(R_{b} - 1)^{2}(\epsilon_{j}^{b})^{2}}{R_{b}^{2}(\epsilon_{b}^{b})^{2}} (\delta_{\epsilon})^{2} + \mathcal{O}\left((\epsilon_{j}^{b})^{2}\right).$$
¹¹ FP syst

DeepJetTransformer

Blekman et all, 2406.08590

Jet Flavour Tagging ROC curves at FCC-ee: FP(TP)

- Conservatively take: j = c
- Optimal point $\epsilon_j^b \simeq 10^{-3}$, and $\epsilon_b^b \simeq 0.65$
- Realistic estimate $\delta_\epsilon \simeq 0.01$

 $\Delta R_b/R_b \approx 1/\sqrt{N_{\rm tot}R_b}$

Almost reaches the naive statistical limit!

*Careful with additional backgrounds like collimated jets from VV; see the paper.

DeepJetTransformer

Blekman et all, 2406.08590

Jet Flavour Tagging ROC curves at FCC-ee: FP(TP)

• Question:

What about simultaneous R_b, R_c, R_s determination?

R_b, R_c, R_s simultaneously

14

Generalisation

$$N_{ij} = N_{\text{tot}} \sum_{z} \frac{2}{1 + \delta_{ij}} R_z \epsilon_z^i \epsilon_z^j$$

$$i, j, z \in \{b, s, c, j\}$$
 $\sum_{z} R_{z} = 1$

Run orthogonal b-tagger, c-tagger and s-tagger on each jet.

 $i \to z : \epsilon_i^z \qquad \sum_z \epsilon_i^z = 1$

• Fit parameters: $N_{tot}, R_b, R_s, R_c + \epsilon_b^b, \epsilon_s^s, \epsilon_c^c$ +1% uncorr. systematics on FP closes the fit! Optimize on the ROC curves

bb			
bc	CC		
bs	CS	SS	
bj	сj	sj	jj

e.g. WW run small correlation

$$\rho = \begin{pmatrix} 1 & -0.006 & -0.22 \\ -0.006 & 1 & -0.006 \\ -0.22 & -0.006 & 1 \end{pmatrix}$$

$$\frac{\Delta R_b}{R_b} = 1.7 \cdot 10^{-4}, \ \frac{\Delta R_s}{R_s} = 3.7 \cdot 10^{-3}, \ \frac{\Delta R_c}{R_c} = 1.4 \cdot 10^{-4}$$
:) :| :)

Summary: > Z pole

Observable/FCC-ee Rel. Err. (10^{-4})	WW	Zh	$t \overline{t}$
R_b	1.7	3.6	9.6
R_s	37	58	100
R_c	1.4	2.7	6.9
R_t	-	-	12
$R_{ au,\mu}$	1.6	3.5	9.7
R_e	5.0	5.2	6.4

Summary: Z pole

Observable	Curr. Rel. Err. (10^{-3})	FCC-ee Rel. Err. (10^{-3})
$\Gamma_{\rm Z}$	2.3	0.1
$\sigma_{ m had}^0$	37	5
R_b^Z	3.06	0.3
R_c^Z	17.4	1.5
$A_{ m FB}^{0,b}$	15.5	1
$A^{0,c}_{ m FB}$	47.5	3.08
A_b^Z	21.4	3
A_c^Z	40.4	8
R_e^Z	2.41	0.3
R^Z_μ	1.59	0.05
$R^Z_{ au}$	2.17	0.1
$A^{0,e}_{ m FB}$	154	5
$A_{ m FB}^{0,\mu}$	80.1	3
$A_{ m FB}^{0, au}$	104.8	5
A_e^Z	14.3	0.11
A^Z_μ	102	0.15
$A^Z_{ au}$	102	0.3
$N_{ u}$	50	0.8

Summary: W pole and τ decays

Observable	Value	Error	FCC-ee Tot.
$\Gamma_W \; [{ m MeV}]$	2085	42	1.24
$m_W \; [{ m MeV}]$	80350	15	0.39
$\operatorname{Br}(W \to e\nu)(\%)$	10.71	0.16	0.0032
${ m Br}(W o \mu u)(\%)$	10.63	0.15	0.0032
$\operatorname{Br}(W \to \tau \nu)(\%)$	11.38	0.21	0.0046
$ au o \mu u u (\%)$	17.39	0.04	0.003
au o e u u (%)	17.82	0.04	0.003

 $2q2\ell$

 4ℓ

SMEFT interpretation

$$\begin{array}{c|c} \mathcal{O}_{\ell q}^{(1)} & (\bar{\ell}_p \gamma_\mu \ell_r) (\bar{q}_s \gamma^\mu q_t) \\ \mathcal{O}_{\ell q}^{(3)} & (\bar{\ell}_p \gamma_\mu \tau^I \ell_r) (\bar{q}_s \gamma^\mu \tau_I q_t) \\ \mathcal{O}_{eu} & (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ \mathcal{O}_{ed} & (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{\ell u} & (\bar{\ell}_p \gamma_\mu \ell_r) (\bar{u}_s \gamma^\mu u_t) \\ \mathcal{O}_{\ell d} & (\bar{\ell}_p \gamma_\mu \ell_r) (\bar{d}_s \gamma^\mu q_t) \\ \mathcal{O}_{qe} & (\bar{e}_p \gamma_\mu e_r) (\bar{q}_s \gamma^\mu q_t) \\ \mathcal{O}_{\ell equ} & (\bar{\ell}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t) \\ \mathcal{O}_{\ell equ} & (\bar{\ell}_p^j \sigma_\mu \nu e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t) \\ \mathcal{O}_{\ell equ} & (\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_s \gamma^\mu \ell_t) \\ \mathcal{O}_{\ell e} & (\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_s \gamma^\mu e_t) \\ \mathcal{O}_{\ell e} & (\bar{\ell}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t) \\ \mathcal{O}_{qq}^{(1)} & (\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \tau_I \gamma^\mu q_t) \\ \mathcal{O}_{qd}^{(2)} & (\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{qd} & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd} & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd} & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)} & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ \mathcal{O}_{dd}^{(1)}$$

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{\mathscr{O}} C_{\mathscr{O}} \mathcal{O}_{4F}$$

• Limits on
$$\Lambda_{\mathcal{O}} = C_{\mathcal{O}}^{-1/2}$$

• Consider flavor-conserving non-universal $\Delta F = 0$

 $2q2\ell$

4P

SMEFT interpretation

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{\mathscr{O}} C_{\mathscr{O}} \mathcal{O}_{4F}$$

• Limits on
$$\Lambda_{\mathcal{O}} = C_{\mathcal{O}}^{-1/2}$$

• Consider flavor-conserving non-universal $\Delta F = 0$

<u>R ratios</u> > Z

• Tree-level effect: $2q2\ell$ and 4ℓ with pr = 11 $e \qquad q, \ell$ $e \qquad q, \ell$

• SMEFT RG (gauge running): all vectorial operators

• Example: $[\mathcal{O}_{qe}]_{3311}$

 Observable/FCC-ee Rel. Err. (10^{-4}) WW
 Zh
 $t\bar{t}$
 R_b 1.7
 3.6
 9.6

But
$$\frac{\Delta R_b}{R_b} \sim \frac{s}{\Lambda^2}$$
 • Energy vs Precision!

Thus, the bound on

$$\Lambda_{qe,3311} = \{17.8, 17.4, 16.5\}$$
 TeV
 WW, Zh , and $t\bar{t}$ runs

Similar sensitivity at different energies!

*in the rest of the talk, we combine the three runs.

 $2q2\ell$ tree-level: 3rd quark family — electrons

 $2q2\ell$ tree-level: 2nd quark family — electrons

<u> $2q2\ell$ tree-level</u>: Ist quark family — electrons

Oblique corrections:

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{\hat{W}}{4m_W^2} (D_\rho W^a_{\mu\nu})^2 - \frac{\hat{Y}}{4m_W^2} (\partial_\rho B^a_{\mu\nu})^2$$

	$\hat{W} imes 10^5$	$\hat{Y} imes 10^5$
Current (LHC)	[-19, 5]	[-31, 14]
HL-LHC	[-4.5, 6.9]	[-6.4, 8.0]
FCC-ee pole observables	[-1.7, 1.7]	$\left[-12,12 ight]$
FCC-ee above the pole	$\left [-0.62, 0.62] \right $	$\left[-2.3,2.3 ight]$

	Λ [3333] [T _o V]	FCC-ee	FCC-ee
<u>I hird-family dominance:</u>		Z, W -pole+ τ	above Z -pole
	$\Lambda^{(1)}_{\ell q}$	15.7	1.1
	$\Lambda^{(ar{3})}_{\ell q}$	14.0	5.1
	Λ_{eu}	16.2	1.6
	Λ_{ed}	1.5	1.3
$7 \qquad \qquad$	$\Lambda_{\ell u}$	15.4	1.5
	$\Lambda_{\ell d}$	1.5	1.3
	Λ_{qe}	16.7	1.1
\smile $\backslash 3$	$\Lambda_{\ell\ell}$	1.0	1.0
	$\Lambda_{\ell e}$	2.1	1.5
VS	Λ_{ee}	3.5	2.4
VO	$\Lambda^{(1)}_{qq}$	13.1	2.4
	$\Lambda^{(3)}_{qq}$	8.4	7.1
e $\sqrt{3}$	$\Lambda^{(1)}_{qu}$	9.4	1.4
$\rightarrow \sim \sim$	$\Lambda^{(1)}_{qd}$	3.1	0.9
$e / \qquad $	Λ_{uu}	12.1	1.9
	Λ_{dd}	0.4	2.3
	$\Lambda^{(1)}_{ud}$	2.8	1.9

TABLE VII: The 95% CL bounds at and above the Z-pole (at one-loop) on operators with flavor indices prst = 3333.

Flavor violation $\Delta F = 1$

$$e \qquad q_i \\ e \qquad q_j$$

$$R_{ij} = \frac{\sigma(e^+e^- \to q_i\bar{q}_j) + \sigma(e^+e^- \to q_j\bar{q}_i)}{\sum_{k,l=u,d,s,c,b}\sigma(e^+e^- \to q_k\bar{q}_l)}$$

$$N_{ij} = N_{\text{tot}} \sum_{k,l} \frac{1 + \delta_{kl}}{1 + \delta_{ij}} R_{kl} \epsilon_k^i \epsilon_l^j$$

$$R_{ij} < \frac{\sigma_b}{N_{\text{tot}}\epsilon_i^i \epsilon_j^j} \cdot \Phi^{-1}(1-\alpha)$$

• Result:

Energy	ij	R_{ij}
	bs	$2.80 \cdot 10^{-6}$
WW	bd	$3.44 \cdot 10^{-5}$
	cu	$5.28 \cdot 10^{-5}$
	bs	$ 6.37\cdot10^{-6}$
Zh	bd	$6.58 \cdot 10^{-5}$
	cu	$1.10 \cdot 10^{-4}$
	bs	$1.79 \cdot 10^{-5}$
$tar{t}$	bd	$1.53 \cdot 10^{-4}$
	cu	$2.70 \cdot 10^{-4}$

- SMEFT contributes at order Λ^{-4} to R_{ij}
- Indirect limits $q_i \rightarrow q_j e^+ e^-$ already provide too strong of a target.

Models

Infamous **B**-anomalies

 $b \to s \ell^+ \ell^-$

CTV

Let's take NP models that explain one (or both) and see what FCC-ee has to say!

 $\begin{array}{ll} U(2)_{\ell} \text{ flavor doublet: } \alpha \ = \ 1,2 & \qquad \text{Quark doublet:} \\ S^{\alpha} \ \sim \ \left(\overline{\mathbf{3}},\mathbf{3},1/3\right) = (S_e,S_{\mu})^T & \qquad q^i \ = \ (V_{ji}^* u_L^j,d_L^i)^T \end{array}$

$$\mathcal{L} \supset -M^2 S^{\dagger}_{\alpha} S^{\alpha} - (\lambda_i \, \bar{q}^c_i \ell_{\alpha} S^{\alpha} + \text{h.c.})$$

 $\begin{array}{ll} U(2)_{\ell} \text{ flavor doublet: } \alpha \ = \ 1,2 & \qquad \text{Quark doublet:} \\ S^{\alpha} \ \sim \ \left(\overline{\mathbf{3}},\mathbf{3},1/3\right) = (S_e,S_{\mu})^T & \qquad q^i \ = \ (V_{ji}^* u_L^j,d_L^i)^T \end{array}$

$$\mathcal{L} \supset -M^2 S^{\dagger}_{\alpha} S^{\alpha} - (\lambda_i \, \bar{q}_i^c \ell_{\alpha} S^{\alpha} + \text{h.c.})$$

$$\int_{s}^{b} \underbrace{S_{\mu}}_{s} \mu_{\mu} = \int_{s}^{b} \underbrace{S_{e}}_{s} e^{e} \xrightarrow{\Delta C_{9}^{\text{univ}} = -\Delta C_{10}^{\text{univ}}}_{e} \text{ where } r_{i} = \frac{\lambda_{i}}{M}$$

$$\text{LFU LQ: Corrects } P'_{5} \text{ while } R_{X} = 1$$

 $\begin{array}{ll} U(2)_{\ell} \text{ flavor doublet: } \alpha \ = \ 1, 2 & \qquad \text{Quark doublet:} \\ S^{\alpha} \ \sim \ \left(\overline{\mathbf{3}}, \mathbf{3}, 1/3\right) = (S_e, S_{\mu})^T & \qquad q^i \ = \ (V_{ji}^* u_L^j, d_L^i)^T \end{array}$

$$\mathcal{L} \supset -M^2 S^{\dagger}_{\alpha} S^{\alpha} - (\lambda_i \, \bar{q}^c_i \ell_{\alpha} S^{\alpha} + \text{h.c.})$$

Model II: Z' for $b \to s\ell^+\ell^-$

Massive vector: $Z'_{\mu} \sim (\mathbf{1}, \mathbf{1}, 0)$

 $\mathcal{L} \supset g_{ij}\bar{q}_i\gamma_\mu q_j Z'^\mu + g_\ell (\bar{\ell}_\alpha\gamma_\mu\ell_\alpha + \bar{e}_\alpha\gamma_\mu e_\alpha) Z'^\mu$

Model II: Z' for $b \to s\ell^+\ell^-$

Massive vector: $Z'_{\mu} \sim (\mathbf{1}, \mathbf{1}, 0)$

 $\mathcal{L} \supset g_{ij}\bar{q}_i\gamma_\mu q_j Z'^\mu + g_\ell (\ell_\alpha\gamma_\mu\ell_\alpha + \bar{e}_\alpha\gamma_\mu e_\alpha) Z'^\mu$

Model II: Z' for $b \to s\ell^+\ell^-$

Massive vector: $Z'_{\mu} \sim (\mathbf{1},\mathbf{1},0)$

 $\mathcal{L} \supset g_{ij}\bar{q}_i\gamma_\mu q_j Z'^\mu + g_\ell (\bar{\ell}_\alpha\gamma_\mu\ell_\alpha + \bar{e}_\alpha\gamma_\mu e_\alpha) Z'^\mu$

However, <u>also</u>:

Meson mixing

 $\sim r_{sh}^2$

LEP-II, R_{ℓ} at FCC-ee

 $\sim r_{\rho}^2$

Model II: Z' for $b \to s\ell^+\ell^-$

Massive vector: $Z'_{\mu} \sim (\mathbf{1}, \mathbf{1}, 0)$ $\mathcal{L} \supset g_{ij}\bar{q}_i\gamma_\mu q_j Z'^\mu + g_\ell (\ell_\alpha\gamma_\mu\ell_\alpha + \bar{e}_\alpha\gamma_\mu e_\alpha) Z'^\mu$ $\implies C_9^{\text{univ}} \sim r_\ell r_{sb} \qquad b \qquad Z'$ $r_x = \frac{g_x}{M}$ However, <u>also</u>: In addition: LEP-II, R_{ℓ} at FCC-ee $R_{b,c,s}$ at FCC-ee **Meson** mixing $\sim r_{\rho}^{2}$ Fairly generic UV completions satisfy: $\sim r_{sk}^2$ $(r_{sb}r_{\ell})^{2} \leq (r_{s}r_{\ell})(r_{b}r_{\ell}) \leq \frac{1}{2}\left((r_{s}r_{\ell})^{2} + (r_{b}r_{\ell})^{2}\right)$

Model II: Z' for $b \to s\ell^+\ell^-$

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \beta_{i\alpha} \, \bar{q}_L^i \gamma^\mu l_L^\alpha \, U_\mu + \text{h.c.}$$

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \beta_{i\alpha} \, \bar{q}_L^i \gamma^\mu l_L^\alpha \, U_\mu + \text{h.c.}$$

$$\oint \text{Matching}$$

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{g_U^2}{4M_U^2} \beta_{i\alpha} \beta_{j\beta}^* \left[Q_{lq}^{(1)} + Q_{lq}^{(3)} \right]^{\beta \alpha i j}$$

$$\begin{split} \mathcal{L} \supset \frac{g_U}{\sqrt{2}} \beta_{i\alpha} \, \bar{q}_L^i \gamma^\mu l_L^\alpha \, U_\mu + \text{h.c.} \\ & \downarrow \text{Matching} \\ \mathcal{L}_{\text{SMEFT}} \supset -\frac{g_U^2}{4M_U^2} \beta_{i\alpha} \beta_{j\beta}^* \left[Q_{lq}^{(1)} + Q_{lq}^{(3)} \right]^{\beta \alpha i j} \end{split}$$

Flavor structure $U(2)^5$ $\beta_{b\tau} = 1$, real $\beta_{s\tau} = \mathcal{O}(V_{cb})$ other couplings smaller

Parameters of interest: $r_U = g_U/M_U$ and $\beta_{s\tau}$

Present constraints

Model III: Vector LQ for $b \to c\tau\nu$ and $b \to s\ell^+\ell^-$

FCC-ee constraints: All RG effects, starting from the 3333 operator in the UV!

Conclusions

- Recent developments in flavor tagging at FCC-ee allow for optimal measurements of R_b, R_c , but further improvements needed for R_s .
- R_x ratios at WW, Zh, $t\bar{t}$ can improve the bounds on the effective scales of new 4F non-universal $\Delta F = 0$ interactions by up to factor ~ 10 .
- This is most important for heavy quark flavors and all lepton flavors.
- SMEFT RG implies subtle interplay and complementarity with the Z pole.
- FCC-ee has a great potential to rule out/discover NP models behind present B anomalies

 $\implies \Delta F = 0$ interactions will compete against FCNC!