b → sνν **decays: why, where and how?**

Open Questions and Future Directions in Flavour Physics – MITP – 04/11/2024

Méril Reboud

Mostly based on:

- Amhis, Kenzie, MR, Wiederhold [2309.11353](https://arxiv.org/abs/2309.11353)
- Gärtner, MR, *et al* [2402.08417](https://arxiv.org/abs/2402.08417)

Laboratoire de Physique des **2 Infinis**

Theory primer

$$
\mathcal{H}_{\text{eff}}^{sb\nu\nu} = -\frac{4G_F}{\sqrt{2}} \lambda_t \sum_i C_i \mathcal{O}_i + \text{h.c.}
$$

$$
\left(\begin{array}{c}\n\vdots \\
\hline\n\end{array}\right)
$$

$$
\mathcal{O}_L^{\nu_i,\nu_j} = \frac{e^2}{16\pi^2} \left(\bar{s}_L \gamma_\mu b_L\right) \left(\bar{\nu}_i \gamma^\mu (1-\gamma_5) \nu_j\right)
$$

 $C_L^{\text{SM}} = -6.32(7)$ @NLO QCD and NNLO EW [Buchalla, Buras '99; Misiak, Urban '99; Brod, Gorbahn, Stamou '10]

- Main message: $b \rightarrow s\overline{v}$ is boringly **clean**
- Neutrinos are the only current way of probing $3rd$ family leptons in FCNC
- I focus on b \rightarrow s, but s \rightarrow d has recently been probed via K $\rightarrow \pi v\bar{v}$ [NA62 '24]

Branching ratios

$$
\frac{d\mathcal{B}(B \to K \nu \overline{\nu})_{\rm SM}}{dq^2} = 3 \tau_B |N_B|^2 |C_L^{\rm SM}|^2 |\lambda_t|^2 \rho_+^K, \qquad N_{B_q} = \frac{G_F \alpha_{\rm em}}{16\pi^2} \sqrt{\frac{m_{B_q}}{3\pi}}
$$

$$
\frac{d\mathcal{B}(B \to K^* \nu \overline{\nu})_{\rm SM}}{dq^2} = 3 \tau_B |N_B|^2 |C_L^{\rm SM}|^2 |\lambda_t|^2 (\rho_{A_1}^{K^*} + \rho_{A_{12}}^{K^*} + \rho_V^{K^*}),
$$

Dominant sources of uncertainties:

- The CKM element $|\lambda_t|$
- The Wilson coefficient C_L
- The form-factors ρ^M

[Buras, Girrbach-Noe *et al* '14]

Form factors

- State-of-the-art form-factor predictions [Boyd, Grinstein, Lebed '94; '97; Gubernari, MR *et al* '23]
	- Lattice QCD and LCSR estimates
	- Analyticity constraints
	- Dispersive bounds
	- Multi-channel analyses
- Investigate **tension between LQCD and LCSR**

 $r_{\rm lh} = \frac{\mathcal{B}(B \to K \nu \bar{\nu})_{\rm low-q^2}}{\mathcal{B}(B \to K \nu \bar{\nu})_{\rm high-q^2}}$

 \rightarrow Cancellation of normalization, CKM, WC (i.e. heavy NP!), experimental uncertainties, … [Bečirević, Piazza, Sumensari '23]

Experimental status

- Combined measurement shows **3.5σ evidence** over the background **2.7σ 'tension'** with SM prediction
- See [Sally's talk](https://indico.mitp.uni-mainz.de/event/372/contributions/5147/) for all the details
- This measurement is model-dependent, the signal is assumed to follow a **SM shape** (keep this in mind for later)

$$
\mathcal{B}(B \to K^* \nu \overline{\nu}) < 2.7 \times 10^{-5},
$$
\n
$$
\text{Q90% CL [Belle '17]}
$$

Slightly beyond the SM (only SM-like neutrinos)

• There is only one additional dim-6 operator that can be written with the SM fields

$$
\mathcal{O}_R^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} (\bar{s}_R \gamma_\mu b_R) (\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j)
$$

• No additional theory uncertainties

$$
\frac{d\mathcal{B}(B \to K \nu \overline{\nu})}{dq^2} = 3 \tau_B |N_B|^2 |C_L + C_R|^2 |\lambda_t|^2 \rho_+^K,
$$

$$
\frac{d\mathcal{B}(B \to K^* \nu \overline{\nu})}{dq^2} = 3 \tau_B |N_B|^2 |\lambda_t|^2 \left(|C_L - C_R|^2 (\rho_{A_1}^{K^*} + \rho_{A_{12}}^{K^*}) + |C_L + C_R|^2 \rho_V^{K^*} \right)
$$

• Clear blind direction for pseudo-scalar kaon

Slightly beyond the SM (only SM-like neutrinos)

• Left-handed currents alone cannot account for the current tension

[Bečirević, Piazza, Sumensari '23]

[Bause, Gisbert, Hiller '23]

Other observables (1)

- With a bit more data, one can measure more involved observables such as:
	- Longitudinal fraction [Buras, Girrbach-Noe *et al* '14; Altmannshofer, Buras *et al* '09...]

$$
F_L(B \to K^* \, \nu \overline{\nu})_{\rm SM} = \frac{\rho_{A_{12}}^{K^*}}{\rho_{A_1}^{K^*} + \rho_{A_{12}}^{K^*} + \rho_{V}^{K^*}}
$$

$$
F_L(B^{\prime} \to K^* \, \nu \overline{\nu}) = \frac{|C_L - C_R|^2 \rho_{A_{12}}^{K^*}}{|C_L - C_R|^2(\rho_{A_1}^{K^*} + \rho_{A_{12}}^{K^*}) + |C_L + C_R|^2 \rho_{V}^{K^*}}
$$

Other observables (2)

- With a bit more data, one can measure more involved observables such as:
	- Longitudinal fraction [Buras, Girrbach-Noe *et al* '14; Altmannshofer, Buras *et al* '09...]
	- (mixing induced) CP-asymmetries [Descotes-Genon, Fajfer *et al* '22] → gives a **clean access to the phase of the WC** (many cancellations)

 \rightarrow e.g. for B^o \rightarrow K_s vv, this gives direct access to:

Im[
$$
e^{-2i\beta}
$$
($V_{tb}V_{ts}^*$)²($C_L^{\nu} + C_R^{\nu}$)²]

$B^0 \rightarrow K_S v \overline{v}$ direct CP asymmetry

Rule of thumb:

- \cdot Belle II 50 ab⁻¹ \rightarrow N = 200
- FCC-ee Tera Z \rightarrow N > 20k

Colors:

- Blue (flat) \rightarrow SM
- [Descotes-Genon, Fajfer *et al* '22] • Other \rightarrow benchmark BSM models

Other observables (3)

- With a bit more data, one can measure more involved observables such as:
	- Longitudinal fraction [Buras, Girrbach-Noe *et al* '14; Altmannshofer, Buras *et al* '09...]
	- (mixing induced) CP-asymmetries [Descotes-Genon, Fajfer et al '22]
	- ν/ℓ ratio [Bečirević, Piazza, Sumensari '23]:

$$
\mathcal{R}_K^{(\nu/l)}[1.1,6]\bigg|_{\text{SM}} = 7.58 \pm 0.04 \qquad \mathcal{R}_{K^*}^{(\nu/l)}[1.1,6]\bigg|_{\text{SM}} = 8.6 \pm 0.3
$$

Summed over the three v and $\ell = e$, μ (minimalist implementation of the charm-loops...)

BSM analysis

- As discussed, the $B \rightarrow$ Kyv analysis assumes the **SM kinematics**.
- In general, such analyses require theory inputs for the form-factors:
	- For fully reconstructed final-state, the uncertainty assigned to form-factors is **usually small** (but has to be checked!)
	- For partially reconstructed final-state, this can be a **large source of uncertainties**
- In the case of $B \rightarrow$ Kvv, switching on **scalar or tensor WC** changes the kinematics completely, as they involve other form-factors!
- Sometimes overlooked in the literature.

$$
\frac{T}{q^2} = 3 \left(\frac{4G_F}{\sqrt{2}} \frac{\alpha}{2\pi} \right)^2 \left| V_{ts}^* V_{tb} \right|^2 \frac{\sqrt{\lambda_{BK}} q^2}{(4\pi)^3 M_B^3} \times \left[\frac{\lambda_{BK}}{24q^2} \left| f_+(q^2) \right|^2 \right| C_{\text{VL}} + C_{\text{VR}} \right|^2 + \frac{\left(M_B^2 - M_K^2 \right)^2}{8 \left(m_b - m_s \right)^2} \left| f_0(q^2) \right|^2 \left| C_{\text{SL}} + C_{\text{SR}} \right|^2 + \frac{2\lambda_{BK}}{3 \left(M_B + M_K \right)^2} \left| f_T(q^2) \right|^2 \left| C_{\text{TL}} \right|^2 \right],
$$

Reinterpretation

- Several techniques have been developed:
	- **Full reinterpretation**: new MC samples are created based on an alternative model [CheckMate; MadAnalysis5; RECAST]
	- **Simplified reinterpretation**: assumes the kinematic distribution to be weakly impacted by BSM physics [SModels]
	- **Reweighting**: Use the existing simulation but reweight the distributions according to a new model [HAMMER; Gärtner, MR *et al* '24]
- The choice of the tool completely depends on the experimental analysis \rightarrow **Compromise** between the needs and the computational cost

Our reinterpretation framework in a nutshell

Méril Reboud - 04/11/2024 **14. In the Seat of Tennish Contract** Contract of Tennish MR et al '241

Concrete examples (1)

- Comparison between the posterior of a WC analysis with and without reinterpreting the data:
	- 2 blind directions are due to the decay (C_{VL} – C_{VR} , C_{SL} – C_{SR})
	- Reinterpreting the data increases the sensitivity drastically
- The plot is a 50 ab⁻¹ projection of the B → Kνν analysis [Gärtner, MR *et al* '24]

Concrete examples (2)

- This framework can easily be generalized to a **combined analysis** of B → K νν and $B \rightarrow K^*$ vv branching ratios
- Symmetry axes will prevent from an unambiguous WC determination \rightarrow angular analyses will be needed
- **Current luminosity vs full Belle II dataset** differs mostly in the scalar sector

[Gärtner, MR *et al* '24]

Light new physics

- The Belle II B \rightarrow Kvv results shows a slight excess for $q^2 \sim 4$ GeV², motivating a **light new physics interpretation, B → KX** [Altmannshofer, Crivellin *et al* '23]
	- A **bump search** is performed assuming a Gaussian signal with experimental width only
	- **pyhf** is used with the maximal amount of experimental information \rightarrow would require a fully reinterpreted analysis [Belle II (Gärtner), w.i.p.]
	- $\,$ Current data favors m $_{\textrm{\tiny{X}}}$ ~ 2 GeV

Future of $b \rightarrow svv$

- $q_i \rightarrow q_i v \bar{v}$ are very promising transitions but remain an experimental challenge
- As far as $b \rightarrow svv$ is concerned, only $B \rightarrow K^{(*)}vv$ decays are currently measurable
- A *tera-Z* run at FCC-ee, if it is build, would however open **many possibilities**:
	- $-$ (10¹² *Z* bosons) x (Br($Z \rightarrow b\overline{b}$) = 0.15) = lot of *b* hadrons^{*}! ("LEP in a minute")
	- All of this in a **clean environment**
	- With many interaction points (as opposed to a linear design).

* But also *c* hadrons: $Br(Z \rightarrow c\bar{c} = 0.12)$

Future of $b \rightarrow svv$

- Future e^+e^- (CEPC, FCCee) will give access to many $b \rightarrow svv$ modes
- Let's focus on **charged 4-body modes** (for the tracking)

FCCee analysis (briefly)

- **We generated** 4 signal MC samples as well as background (inclusive $Z \rightarrow b\overline{b}$, $Z \rightarrow$ $cc, Z \rightarrow qq$) samples
	- We assumed an IDEA detector design
	- The kinematic is generated via weights from the generated phase-spaceonly events and EOS predictions (LQCD + LCSR)
- We developed 4 dedicated analyses
	- Assumption: perfect vertex seeding and perfect PID
	- 2-step BDT optimization
- We studied few (inclusive) backgrounds

Results

 \bullet Final results for the K^* and φ modes:

- The reconstruction of K_s and Λ were not fully available and the results come from extrapolations: $\sigma(K_s) = 3.37\%$, $\sigma(\Lambda) = 9.86\%$, with purities of 4% and 1.5% respectively
- Rough comparison to the current Belle II sensitivity for the B \rightarrow Kvv (different analyses), ϵ (ITA) ~ 5 – 10%, ϵ (HTA) ~ 0.3 – 0.5%, with a purity of 5% in the signal region

Future phenomenology of $b \rightarrow svv$

• Assuming these efficiency, we would get clean access to $|\lambda_t|$:

Future phenomenology of $b \rightarrow svv$

Assuming these efficiency, we would get clean access to the WET WCs:

Beyond $b \rightarrow svv$

- $K \rightarrow \pi v v$ recently measured [NA62 '24]
	- Allows to disantangle NP scenarios [Buras, Harz, Mojahed '24]
	- Possibility of combined analysis with a flavour structure [Allwicher, Bordone *et al* '24]
- Combined analysis in the (v) SMEFT framework and impact for $b \rightarrow c \ell v$ [Allwicher, Bečirević *et al*; Leal, Rosauro-Alcaraz; Bernlochner, Fedele, *et al*; Datta, Kumar *et al*; Bečirević, Fajfer, *et al*, Marzocca, Nardecchia *et al*; Hou, Li *et al*; Chen, Xu *et al*] (All '24, I hope I didn't forget any groups)

Conclusions

- \bullet b \rightarrow svv decays offer plenty of **extremely clean observables**, opening many opportunities for future phenomenology analyses of
	- (B)SM parameters: CKM elements, WET/SMEFT coefficients…
	- QCD effects: form-factors, QCD penguins…
- This comes with the price of **high experimental challenges**
	- At the level of the measurements: missing energy, vertexing…
	- At the level of the interpretation: model-dependent analyses that need to be reinterpreted
- Belle II will already offer a **first set of measurements**, the rest will have to wait for **future colliders**

Back-up slides

$$
\begin{split} &\text{More objects (for FCC-ee)}\\ &\frac{d\mathcal{B}(B^{0}\to K_{S}^{0}\nu\overline{\nu})_{\rm SM}}{dq^{2}}=3\,\tau_{B^{0}}|N_{B^{0}}|^{2}|C_{L}^{\rm SM}|^{2}|\lambda_{t}|^{2}\rho_{+}^{K^{0}_{s}}},\\ &\rho_{+}^{K^{0}}=\frac{\lambda^{3/2}}{2m_{B^{0}}^{4}}\left(f_{+}^{K}(q^{2})\right)^{2},\qquad \frac{d\mathcal{B}(B^{0}\to K^{*0}\nu\overline{\nu})_{\rm SM}}{dq^{2}}=3\,\tau_{B^{0}}|N_{B^{0}}|^{2}|C_{L}^{\rm SM}|^{2}|\lambda_{t}|^{2}(\rho_{A_{1}}^{K^{*0}}+\rho_{A_{12}}^{K^{*0}}+\rho_{V}^{K^{*0}}),\\ &\rho_{V}^{K^{*0}}=\frac{2\,q^{2}\lambda^{3/2}}{(m_{B^{0}}+m_{K^{*0}})m_{B^{0}}^{4}}\left(V^{K^{*}}(q^{2})\right)^{2},\quad \frac{d\mathcal{B}(B_{s}^{0}\to\phi\nu\overline{\nu})_{\rm SM}}{dq^{2}}=3\,\tau_{B_{s}^{0}}|N_{B_{s}^{0}}|^{2}|C_{L}^{\rm SM}|^{2}|\lambda_{t}|^{2}(\rho_{A_{1}}^{A}+\rho_{A_{12}}^{K^{*0}}+\rho_{V}^{K^{*0}}),\\ &\rho_{A_{1}}^{K^{*0}}=\frac{2\,q^{2}\lambda^{3/2}}{(m_{B^{0}}+m_{K^{*0}})^{2}}\frac{d\mathcal{B}(A_{b}^{0}\to\Lambda\nu\overline{\nu})_{\rm SM}}{d^{2}}=3\,\tau_{A_{s}^{0}}|N_{A_{b}^{0}}|^{2}|C_{L}^{\rm SM}|^{2}|\lambda_{t}|^{2}(\rho_{A_{1}}^{A}+\rho_{A_{1}}^{A}+\rho_{I_{0}}^{A}+\rho_{I_{0}}^{A}),\\ &A_{\rm FB}^{K^{*0}}(A_{b}^{0}\to\Lambda\nu\overline{\nu})_{\rm SM}=\frac{\alpha}{2}\,\frac{\tilde{\rho}_{A}^{A}+\tilde{\rho}_{A}^{A}}{\rho_{A_{1}}^{A}+\rho_{I_{0}}^{A}+\rho_{I_{0}}^{A}+\rho_{I_{0}}
$$

 $\overline{1}$

$$
\begin{split} \rho_{f_{\perp}^{V/A}}^{A} &= \frac{32\,q^2\lambda^{1/2}((m_{A_b^0} \mp m_{A})^2 - q^2)}{m_{A_b^0}^4} \left(f_{\perp}^{V/A}(q^2)\right)^2, \\ \rho_{f_0^{V/A}}^{A} &= \frac{16\,\lambda^{1/2}(m_{A_b^0} \pm m_{A})^2((m_{A_b^0} \mp m_{A})^2 - q^2)}{m_{A_b^0}^4} \left(f_0^{V/A}(q^2)\right)^2 \end{split}
$$

$$
F_L(B^0 \to K^{*0} \nu \overline{\nu})_{\rm SM} = \frac{\rho_{A_{12}}^{K^{*0}}}{\rho_{A_1}^{K^{*0}} + \rho_{A_{12}}^{K^{*0}} + \rho_{V}^{K^{*0}}}
$$

$$
F_L(B_s^0 \to \phi \nu \overline{\nu})_{\rm SM} = \frac{\rho_{A_{12}}^{\phi}}{\rho_{A_1}^{\phi} + \rho_{A_{12}}^{\phi} + \rho_{V}^{\phi}}.
$$

$$
\tilde{\rho}_{\perp}^{A} = \frac{32 q^2 \lambda^{1/2} ((m_{A_b^0} \mp m_A)^2 - q^2)}{m_{A_b^0}^4} f_{\perp}^{V}(q^2) f_{\perp}^{A}(q^2),
$$
\n
$$
\tilde{\rho}_0^{A} = \frac{16 \lambda^{1/2} (m_{A_b^0} \pm m_A)^2 ((m_{A_b^0} \mp m_A)^2 - q^2)}{m_{A_b^0}^4} f_0^{V}(q^2) f_0^{A}(q^2).
$$
\n
$$
V_{B_q} = \frac{G_F \alpha_{em}}{16\pi^2} \sqrt{\frac{m_{B_q}}{3\pi}}
$$