

OPEN QUESTIONS IN INCLUSIVE B DECAYS

Matteo Fael (U. Padova and INFN Padova)

Open directions and future questions in flavour physics MITP MAINZ – NOVEMBER 14TH, 2024

INCLUSIVE DECAYS OF B MESONS

Rare decay $B \rightarrow X_{s\gamma}$

Semileptonic $B \rightarrow X_c l \bar{\nu}_l$

We need precise predictions in the SM, often at the 1-2% level!

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

Nonleptonic decays

Lifetime of B mesons

OUTLOOK

▶ New results in semileptonic inclusive B → X_c l ν _l decays ▶ The B-meson lifetimes to NNLO

SEMILEPTONIC B DECAYS

- ► Extraction of the CKM element $|V_{ch}|$.
- Determination of the non-perturbative matrix elements from experimental data.
- Predictions for processes with FCNC crucially depend on these SM inputs.

$$|V_{tb}V_{ts}^{\star}| \simeq |V_{cb}|^2 (1 + O(\lambda^2))$$

$$\epsilon_K \simeq |V_{cb}|^4 x$$

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

THE HEAVY QUARK EXPANSION

THE HEAVY QUARK EXPANSION

Free quark decay M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

SPECTRAL MOMENTS

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

 $(O)^n - d\Phi$ 17

Cut: moments are measured with progressive cuts in E_l or q^2

$$= (p_{l} + p_{\nu})^{2} = q^{2}$$
$$= (p_{B} - q)^{2} = M_{X}^{2}$$
$$= v_{B} \cdot p_{I} = E_{I}$$

leptonic invariant mass

hadronic invariant mass

lepton energy

Q2 MOMENTS

$$\begin{aligned}
\partial O \\
\partial v_B &= 0 \\
\partial v_B &= 0 \\
\hline
\partial v_B &= 0 \\
\hline$$

decays to order $1/m_b^3$ Mannel, Milutin, Vos, hep-ph/2311.12002

10 instead of 19 HQE parameters

First new data since 2010!

Measurements of q^2 moments of inclusive $B \rightarrow X_c l^+ \nu_l$ decays with hadronic tagging Belle, Phys. Rev. D 104, 112011 (2022) Belle II, Phys. Rev. D 107, 072002 (2023)

$|V_{cb}|$ from q^2 moments

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

$|V_{cb}| = (41.69 \pm 0.59_{\text{fit}} \pm 0.23_{\text{h.o.}}) \times 10^{-3}$ = (41.69 ± 0.63) × 10⁻³

Bernlochner, **MF**, Olschwesky, Person, van Tonder, Vos, Welsch, JHEP 10 (2022) 068

Γ	tree	$lpha_{s}$	α_s^2	$lpha_s^3$	$\langle (q^2)^n \rangle$	tree	$lpha_{s}$	$lpha_s^2$	α_s^3
Partonic	1	\	1	1	Partonic	\	1	K	
μ_G^2	1	\checkmark			μ_G^2	\checkmark	1		
$ ho_D^3$	1	\checkmark			$ ho_D^3$	\checkmark	1		
$1/m_b^4$	1				$1/m_b^4$	\checkmark			
$m_b^{\rm kin}/\overline{m}_c$		1	1	1		NNLO) corre	ections	miss

N3LO corrections to the total rate! MF, Schönwald, Steinhauser, Phys.Rev.Lett. 125 (2020) 5, 052003 Phys.Rev.D 103 (2021) 1, 014005, Phys.Rev.D 104 (2021) 1, 016003

Incl. q^2 Moments JHEP 10 (2022) 068

Incl. E_{ℓ} , m_X and Incl. q^2 Our Average

	$\mathcal{B}(B \to X \ell \bar{\nu}_{\ell}) \ (\%)$	$\mathcal{B}(B \to X_c \ell \bar{\nu}_\ell) \ (\%)$	In Average		
Belle [63] $E_{\ell} > 0.6 \mathrm{GeV}$	-	10.54 ± 0.31	✓		
Belle [63] $E_{\ell} > 0.4 \mathrm{GeV}$	-	10.58 ± 0.32		V = (A2)	$(0 + 0 47) \times 10^{-3}$
CLEO $[65]$ incl.	10.91 ± 0.26	10.72 ± 0.26		$ V_{cb} - (42.0)$	$10 \pm 0.477 \times 10$
CLEO [65] $E_{\ell} > 0.6$	10.69 ± 0.25	10.50 ± 0.25	\checkmark		
BaBar [62] incl.	10.34 ± 0.26	10.15 ± 0.26	\checkmark		
$\text{BaBar SL} \begin{bmatrix} 64 \end{bmatrix} E_\ell > 0.6 \text{GeV}$	-	10.68 ± 0.24	\checkmark		
Our Average	-	10.48 ± 0.13			
Average Belle [63] & BaBar [64]	-	10.63 ± 0.19			
$(E_\ell > 0.6 \mathrm{GeV})$					
	1		/ 1		
39	40		41	42	43
			$ V_{cb} \times$	10 ³	

MF, Prim, Vos, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

- Difference mainly driven by the $Br(B \rightarrow X_c l \bar{\nu}_l)$ average
- ► We need new $\operatorname{Br}(B \to X_c l \bar{\nu}_l)$ measurements to improve.
- Challenging control sub-percent effects in the HQE

NNLO CORRECTIONS *q*² **SPECTRUM MF,** Herren, JHEP 05 (2024) 287

$$\frac{d\Gamma}{d\hat{q}^2} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[F_0(\rho, \hat{q}^2) + \frac{\alpha_s}{\pi} F_1(\rho, \hat{q}^2) + \left(\frac{\sigma_s}{\pi}\right) \right]$$

with $\rho = m_c/m_b$

Integration w.r.t. neutrino-electron phase space

$$\mathscr{L}^{\mu\nu}(p_L) = \int L^{\mu\nu} d\Phi_2(p_L; p_l, p_\nu) = \frac{1}{384\pi^5} \left(1 - \frac{m_\ell^2}{p_L^2}\right)^2 \left[\left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu} p_L^{\nu} - g^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^2 p_$$

Inverse unitarity

$$\delta(p_L^2 - q^2) \to \frac{1}{2\pi i} \left[\frac{1}{p_L^2 - q^2 - i0} - \frac{1}{p_L^2 - q^2 + i0} \right]$$

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

NNLO calculation

- ► Three-loop diagrams
- ► Three different masses: m_b^2, m_c^2, q^2

Unfortunate choice of $\overline{m}_c(2 \,\text{GeV})$

8

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D , r_E and r_G with reduced uncertainty. No major shift in $|V_{cb}|$.

Much better $\overline{m}_c(3 \,\text{GeV})$

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

COMBINED FIT: q^2 , E_l and M_X^2 moments

Finauri, Gambino, JHEP 02 (2024) 206 + Sept. 2024 Update (G. Finauri talk in Vienna)

► Old DELPHI, CDF, BaBar, Belle data:

 $\langle E_l \rangle_{E_{\text{cut}}}, \langle M_X^2 \rangle_{E_{\text{cut}}}, \Delta \text{Br}_{E_{\text{cut}}}$

> New Belle & Belle II: $\langle q^2 \rangle_{q_{\text{cut}}^2}$

 $|V_{cb}| = (41.83 \pm 0.47) \times 10^{-3}$

Compared with 2021 fit: $0.51 \rightarrow 0.47$ reduction

 $0.031 \rightarrow 0.018$ reduction

 $Q_1^{\rm kin} \left[{\rm GeV}^2\right]$

m_b^{kin}	$\overline{m}_c(2{\rm GeV})$	μ_{π}^2	μ_G^2	ρ_D^3	$ ho_{LS}^3$	$BR_{c\ell\nu}$	$10^3 V_{cb} $
4.572	1.090	0.430	0.282	0.161	-0.091	10.61	41.83
0.012	0.010	0.040	0.048	0.018	0.089	0.15	0.47
1	0.389	-0.229	0.561	-0.025	-0.181	-0.062	-0.422
	1	0.019	-0.238	-0.030	0.083	0.033	0.076
		1	-0.097	0.536	0.262	0.142	0.334
			1	-0.261	0.006	0.006	-0.260
				1	-0.019	0.022	0.139
					1	-0.011	0.067
						1	0.697
							1

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

Independent sets of data

- Difference mainly driven by the $Br(B \rightarrow X_c l \bar{\nu}_l)$ average
- ► We need new $Br(B \rightarrow X_c l \bar{\nu}_l)$ measurements to improve.
- Challenging control sub-percent effects in the HQE

MF, Prim, Vos, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

BELLE II MEASUREMENT OF R(X)

 $\Gamma_{B \to X \ell_1 \bar{\nu}_1}$ $\Gamma_{B \to X \ell_2 \bar{\nu}_{l_2}}$ $K(X_{\ell_1/\ell_2})$

Rahimi, Vos, JHEP 11 (2022) 007 Ligeti, Luke, Tackmann, Phys. Rev. D 105, 073009 (2022)

Enrichment with q^2 selection cut

$$R(X_c) = 0.241 \left[1 - 0.156 \frac{\alpha_s}{\pi} - 1.766 \left(\frac{\alpha_s}{\pi} \right)^2 \right]$$
$$R(X_c) \Big|_{q^2 > 6 \,\text{GeV}^2} = 0.350 \left[1 - 0.782 \frac{\alpha_s}{\pi} - 8.355 \left(\frac{\alpha_s}{\pi} \right)^2 \right]$$

MF, Herren, JHEP 05 (2024) 287

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

$R^{\exp}(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{syst})$ Belle II, Phys.Rev.Lett. 131 (2023) 5, 051804 $R^{\exp}(X_{\tau/l}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$ Belle II, hep-ex/2311.07248 $R^{\rm SM}(X_{\tau/l}) = 0.225 \pm 0.005$

INCLUSIVE DECAYS: OPEN-SOURCE LIBRARY MF, Milutin, Vos, hep-ph/2409.15007

Open-source library in python: **KOLYA**

https://gitlab.com/vcb-inclusive/kolya

- Prediction in the HQE for
 - $\Gamma_{\rm sl}$ and $\Delta\Gamma_{\rm sl}(E_{\rm cut})$
 - Centralised moments $\langle E_{\ell} \rangle_{E_{\text{cut}}}$, $\langle M_X^2 \rangle_{E_{\text{cut}}}$
 - Centralised moments $\langle q^2 \rangle_{q_{cur}^2}$

• Use the kinetic scheme

Bigi, Shifman, Uraltsev, Vainshtein, Phys. Rev. D 56 (1997) 4017 Czarnecki, Melnikov, Uraltsev, Phys.Rev.Lett. 80 (1998) 3189 MF, Schönwald, Steinhauser, Phys. Rev. Lett. 125 (2020) 052003

• Interface to CRunDec for automatic α_{s} , $m_b^{\rm kin}$ and \overline{m}_c RGE evolution

Chetyrkin, Kuhn, Steinhauser, Comput. Phys. Commun. 133 (2000) 43 Schmidt, Steinhauser, Comput. Phys. Commun. 183 (2012) 1845 Herren, Steinhauser, Comput. Phys. Commun. 224 (2018) 333

HEAVY QUARK EXPANSION

Double series expansion in the strong coupling constant α_s and power suppressed terms $\Lambda_{\rm QCD}/m_b$

• Total rate
$$\Gamma_{s1} = \frac{G_F^2 m_b^5 A_{ew}}{192\pi^3} |V_{cb}|^2 \left[\left(1 - \frac{\mu_{\pi}^2}{2m_b^2} \right) \left(X_0(\rho) + \frac{\alpha_s}{\pi} X_1(\rho) + \left(\frac{\alpha_s}{\pi} \right)^2 X_2(\rho) + \left(\frac{\alpha_s}{\pi} \right)^3 X_3(\rho) + \dots \right) \right. \\ \left. + \left(\frac{\mu_G^2}{m_b^2} - \frac{\rho_D^3}{m_b^3} \right) \left(g_0(\rho) + \frac{\alpha_s}{\pi} g_1(\rho) + \dots \right) + \frac{\rho_D^3}{m_b^3} \left(d_0(\rho) + \frac{\alpha_s}{\pi} d_1(\rho) + \dots \right) + O\left(\frac{1}{m_b^4} \right) \right]$$

Moments of differential distribution

$$\begin{split} \langle O^n \rangle_{\text{cut}} &= (m_b)^{mn} \left[X_0^{(O,n)} + \frac{\alpha_s}{\pi} X_1^{(O,n)} + \left(\frac{\alpha_s}{\pi}\right)^2 X_2^{(O,n)} + \frac{\mu_{\pi}^2}{m_b^2} \left(p_0^{(O,n)} + \frac{\alpha_s}{\pi} p_1^{(O,n)} + \dots \right) \right. \\ &+ \frac{\mu_G^2}{m_b^2} \left(g_0^{(O,n)} + \frac{\alpha_s}{\pi} g_1^{(O,n)} + \dots \right) + \frac{\rho_D^3}{m_b^3} \left(d_0^{(O,n)} + \frac{\alpha_s}{\pi} d_1^{(O,n)} + \dots \right) + \frac{\rho_{LS}}{m_b^2} \left(l_0^{(O,n)} + \frac{\alpha_s}{\pi} l_1^{(O,n)} + \dots \right) + O\left(\frac{1}{m_b^4}\right) \right] \end{split}$$

BUILDING BLOCKS IN THE HQE

complete references in backup slides

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

► Power up to $1/m_b^5$

Mannel, Milutin, Vos, hep-ph/2311.12002

> Perturbative corrections to Γ_{sl} up to $O(\alpha_s^3)$

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 016003, JHEP 08 (2022) 039

> NLO corrections to power suppressed terms for q^2 moments

Mannel, Moreno, Pivovarov, JHEP 08 (2020) 089

> NNLO corrections to q^2 moments

MF, Herren, JHEP 05 (2024) 287

IMPLEMENTATION

- Tree level implemented in exact form
- ► We implement analytic results for higher QCD corrections for $\Gamma_{\rm sl}$
 - Exact results at NLO
 - Asymptotic expansions at NNLO and N3LO
- Use Numba for fast numerical evaluation

https://numba.pydata.org

 $\rho = m_c/m_b \quad \hat{q}^2 = q^2/m_b^2$

Chebyshev interpolation grids for QCD corrections to the moments

$$f(\rho, \hat{q}_{\text{cut}}^2) = \int_{q^2 > q_{\text{cut}}^2} (q^2)^i (q_0)^j \frac{d^3 \Gamma^{\text{NLO}}}{dq^2 dq_0 dE_l} dq^2 dq$$

EFFECTIVE HAMILTONIAN FOR SEMILEPTONIC DECAYS

$$\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + C_{V_L} \right) O_{V_L} + \right]_{i=1}$$

$$O_{V_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}\right) \qquad O_{S_{L(R)}} = \left(\bar{c}P_{L(R)}b\right)\left(\bar{\ell}P_{L}\nu_{\ell}\right) \qquad O_{T}$$

- In the SM all $C_i = 0$
- In the WET the expansion parameter is $1/v^2$, i.e. Wilson coefficients are O(1)
- NP effects from SMEFT are suppressed by $1/\Lambda_{\text{NP}}^2$. The matching to WET leads to a $(v/\Lambda_{\text{NP}})^2$ suppression.
- In the following we assume $|C_i| \ll 1$

SEMILEPTONIC INCLUSIVE DECAYS: NP EFFECTS MF, Rahimi, Vos, JHEP 02 (2023) 086

► Contribution to the moments of $B \to X_c l \bar{\nu}_l$

$$\langle O \rangle = \xi_{\text{SM}} + |C_{V_R}|^2 \xi_{\text{NP}}^{\langle V_R, V_R \rangle} + |C_{S_L}|^2 \xi_{\text{NP}}^{\langle S_L, S_L \rangle} + |C_{S_R}|^2 \xi_{\text{NP}}^{\langle S_R, S_R \rangle} + |C_T|^2 \xi_{\text{NP}}^{\langle T, T \rangle} + \text{Re}((C_{V_L} - 1)C_{V_R}^*) \xi_{\text{NP}}^{\langle V_L, V_R \rangle} + \text{Re}(C_{S_L}C_{S_R}^*) \xi_{\text{NP}}^{\langle S_L, S_R \rangle} + \text{Re}(C_{S_L}C_T^*) \xi_{\text{NP}}^{\langle S_L, T \rangle} + \text{Re}(C_{S_R}C_T^*) \xi_{\text{NP}}^{\langle S_R, T \rangle}$$

$$O_{V_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L}\nu_{\ell}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L}\nu_{\ell}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L}\nu_{\ell}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L}\nu_{\ell}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L}\nu_{\ell}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}b\right) \qquad O_{S_{L(R)}} = \left(\bar{c}\gamma_{\mu}P_{L}\nu_{\ell}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}$$

 $\bar{c}P_{L(R)}b\left(\bar{\ell}P_L\nu_{\ell}\right) \qquad O_T = \left(\bar{c}\,\sigma_{\mu\nu}P_Lb\right)\left(\bar{\ell}\,\sigma^{\mu\nu}P_L\nu_{\ell}\right)$

HEAVY QUARK EXPANSION WITH NP EFFECTS

- Series expansion in three parameters:
- Λ_{QCD}/m_b
- α_s
- $(v/\Lambda_{\rm NP})^2$

To properly catch the leading effects:

• $(v/\Lambda_{\rm NP})^2 \times \alpha_s^0 \times (1/m_b)^0$: NP at tree level in the freequark approximation.

20 Sept. 2023

HEAVY QUARK EXPANSION WITH NP EFFECTS

- Series expansion in three parameters:
- Λ_{QCD}/m_b
- α_s
- $(v/\Lambda_{\rm NP})^2$

To properly catch the leading effects:

- $(v/\Lambda_{\rm NP})^2 \times \alpha_s^0 \times (1/m_b)^0$: NP at tree level in the freequark approximation.
- $(v/\Lambda_{\rm NP})^2 \times \alpha_s^0 \times (1/m_b)^{2,3}$: power-suppressed terms for NP effects

HEAVY QUARK EXPANSION WITH NP EFFECTS

- Series expansion in three parameters:
- Λ_{QCD}/m_b
- α_s
- $(v/\Lambda_{\rm NP})^2$

To properly catch the leading effects:

- $(v/\Lambda_{\rm NP})^2 \times \alpha_s^0 \times (1/m_b)^0$: NP at tree level in the freequark approximation.
- $(v/\Lambda_{\rm NP})^2 \times \alpha_s^0 \times (1/m_b)^{2,3}$: power-suppressed terms for NP effects
- $(v/\Lambda_{\rm NP})^2 \times \alpha_s^1 \times (1/m_b)^0$: QCD NLO corrections to NP effects

Bordone, Gambino, Capdevila, PLB 822 (2021) 136679

GLOBAL FIT OF *q*² **MOMENTS** Bernlochner, **MF**, Milutin, Prim, Vos, in preparation

Perturbative QCD uncertainties

- ► Variation of unphysical scales $\alpha_s(\mu_s), \overline{m}_c(\mu_c), m_b^{\text{kin}}(\mu_b)$
- ► Very low p-Value in the fit

HQE uncertainties

► Current recipe: inflate uncertainty on μ_G and ρ_D to cover the truncation of $1/m_b$ expansion.

Finauri, Gambino, JHEP 02 (2024) 206 Bordone, Gambino, Capdevila, PLB 822 (2021) 136679

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

Does the HQE explain the experimental data? Do we observe a convergence of the HQE?

THEORY CORRELATIONS: CURRENT STATUS

- $\triangleright \rho_D$: $\pm 30\%$ estimate theory uncertainty.
- ► Observed correlation is meaningless.
- Necessary to model theory correlations:
 - Strong correlations between different cuts, no correlation between different moments Gambino, Schwanda, Phys.Rev.D 89 (2014) 1, 014022
 - Flexible correlation via nuisance parameters

Bernlochner, MF, Olschwesky, Person, van Tonder, Vos, Welsch, JHEP 10 (2022) 068

0.8 · 0.6 - 0.4 - 0.2 0.0 -0.2

THEORY CORRELATIONS: EXPLOITING THE $1/m_b^{4,5}$ CORRECTIONS

Bernlochner, MF, Milutin, Prim, Vos, in preparation

- \blacktriangleright Do not include uncertainty on ρ_D and μ_G
- > Exploit known expressions for $1/m_b^{4,5}$.
- Check order by order if the fit improves and stabilises.
- Sample μ_s , μ_c and μ_b with uniform distribution and refit.
- > LLSA inputs as estimator of the $1/m_b^{4,5}$.
- > $1/m_{h}^{4,5}$ terms determine correlations in the fit. D

THEORY CORRELATIONS: EXPLOITING THE $1/m_b^{4,5}$ **CORRECTIONS**

Bernlochner, MF, Milutin, Prim, Vos, in preparation

- ► Do not include uncertainty on ρ_D and μ_G
- > Exploit known expressions for $1/m_h^{4,5}$.
- Check order by order if the fit improves and stabilises.
- Sample μ_s , μ_c and μ_b with uniform distribution and refit.
- ► LLSA inputs as estimator of the $1/m_b^{4,5}$.
- > $1/m_b^{4,5}$ terms determine correlations in the fit.

THE LIFETIMES OF B MESONS TO NNLO

LIFETIMES

Total width

Nonleptonic decays (dominant)

 $\blacktriangleright b \rightarrow c \bar{u} d$

$$\blacktriangleright b \rightarrow c\bar{c}s$$

► Test the SM and framework used Perform indirect BSM searches

THE HEAVY QUARK EXPANSION

$$\Gamma = \Gamma_3 + \Gamma_5 \frac{\langle B | \mathcal{O}_5 | B \rangle}{m_b^2} + \Gamma_6 \frac{\langle B | \mathcal{O}_6}{m_b^3}$$

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

 f_1 f_2^+ $\frac{|B\rangle}{2} + 16\pi^2 \frac{1}{m_b^3}$ $|\tilde{\mathcal{O}}_6|B\rangle$ • • • $\tilde{\mathcal{O}}_6$ \mathcal{O}_7

Lenz, Piscopo, Rusov, JHEP 01 (2023) 004

> Error on $\Gamma(B_a)$ dominated by theoretical uncertainties on $\Gamma_3!$ ► GOAL: push accuracy for $\Gamma_3^{\text{non leptonic}}$ at NNLO

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

Error budget

Lenz, Piscopo, Ruov, JHEP 01 (2023) 004

NONLEPTONIC DECAYS AT NNLO: CHALLENGES

Four loop master integrals Non depending on $\rho = m_c/m_b$ Issu

 $\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{q_{1,2}=u,c} \sum_{q_2=d,s} \lambda_{q_1q_2q_2} \Big(C_1(\mu_b) O_1^{q_1q_2q_3} + C_2(\mu_b) O_2^{q_1q_2q_3} \Big) + \text{h.c.}$

 $O_1^{q_1 q_2 q_3} = (\bar{q}_1^{\alpha} \gamma^{\mu} P_L b^{\beta}) (\bar{q}_2^{\beta} \gamma_{\mu} P_L q_3^{\alpha}) \qquad O_2^{q_1 q_2 q_3} = (\bar{q}_1^{\alpha} \gamma^{\mu} P_L b^{\alpha}) (\bar{q}_2^{\beta} \gamma_{\mu} P_L q_3^{\beta})$

Non-trivial renormalization of effective operators Issues with γ_5 in dimensional regularisation

NONLEPTONIC DECAYS AT NNLO: CHALLENGES

Auxiliary mass flow (AMFlow)

 $\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{q_1, q_2 = \mu, c} \sum_{q_2 = d, s} \lambda_{q_1 q_2 q_2} \Big(C_1(\mu_b) O_1^{q_1 q_2 q_3} + C_2(\mu_b) O_2^{q_1 q_2 q_3} \Big) + \text{h.c.}$

 $O_1^{q_1 q_2 q_3} = (\bar{q}_1^{\alpha} \gamma^{\mu} P_L b^{\beta}) (\bar{q}_2^{\beta} \gamma_{\mu} P_L q_3^{\alpha}) \qquad O_2^{q_1 q_2 q_3} = (\bar{q}_1^{\alpha} \gamma^{\mu} P_L b^{\alpha}) (\bar{q}_2^{\beta} \gamma_{\mu} P_L q_3^{\beta})$

Non-trivial renormalization of effective operators Issues with γ_5 in dimensional regularisation

NONLEPTONIC DECAYS AT NNLO: CHALLENGES

Auxiliary mass flow (AMFlow)

 $\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{q_1, q_2 = \mu, c} \sum_{q_2 = d, s} \lambda_{q_1 q_2 q_2} \Big(C_1(\mu_b) O_1^{q_1 q_2 q_3} + C_2(\mu_b) O_2^{q_1 q_2 q_3} \Big) + \text{h.c.}$

 $O_1^{q_1 q_2 q_3} = (\bar{q}_1^{\alpha} \gamma^{\mu} P_L b^{\beta}) (\bar{q}_2^{\beta} \gamma_{\mu} P_L q_3^{\alpha}) \qquad O_2^{q_1 q_2 q_3} = (\bar{q}_1^{\alpha} \gamma^{\mu} P_L b^{\alpha}) (\bar{q}_2^{\beta} \gamma_{\mu} P_L q_3^{\beta})$

Non-trivial renormalization of effective operators

Issues with γ_5 in dimensional regularisation

• Specific choice of evanescent operators which preserves Fierz identities in $d \neq 4$

RESULTS IN THE ON SHELL SCHEME

Egner, MF, Schönwald, Steinhauser, JHEP10(2024)144

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

Note: the functions G_{ii} are scheme dependent!

Coefficient of $\alpha_s(m_b)/\pi$

Egner, MF, Schönwald, Steinhauser, JHEP10(2024)144

THEORETICAL UNCERTAINTIES [PRELIMINARY!]

Egner, MF, Lenz, Piscopo, Rusov, Schönwald, Steinhauser, in preparation

UPDATING THE LIFETIMES OF B MESONS [PRELIMINARY!]

Egner, MF, Lenz, Piscopo, Rusov, Schönwald, Steinhauser, in preparation

 $m_b^{\text{kin}}(1 \text{ GeV}) = 4.573 \pm 0.018 \text{ GeV}$ $\overline{m}_c(3 \text{ GeV}) = 0.895 \pm 0.010 \text{ GeV}$

SEMILEPTONIC BRANCHING FRACTION PURELY FROM THEORY [PRELIMINARY!]

The ratio is independent on V_{cb} . This is a test of the HQE and QCD!

 $B_{sl}(B^+) = (11.62^{+0.xx}_{-0.xx})\%$ $B_{sl}(B_d) = (10.64^{+0.xx}_{-0.xx})\%$ $B_{sl}(B_s) = (10.58^{+0.xx}_{-0.xx})\%$

Egner, MF, Lenz, Piscopo, Rusov, Schönwald, Steinhauser, in preparation

 $B_{\text{exp, avg}}(B \to X_c l \bar{\nu}_l) = (10.48 \pm 0.13) \%$

Bernlochner, MF, Olschwesky, Person, van Tonder, Vos, Welsch, JHEP 10 (2022) 068

SEMILEPTONIC BRANCHING FRACTION PURELY FROM THEORY [PRELIMINARY!]

The ratio is independent on V_{cb} . This is a test of the HQE and QCD!

 $B_{sl}(B^+) = (11.62^{+0.xx}_{-0.xx})\%$ $B_{sl}(B_d) = (10.64^{+0.xx}_{-0.xx})\%$ $B_{sl}(B_s) = (10.58^{+0.xx}_{-0.xx})\%$

Egner, MF, Lenz, Piscopo, Rusov, Schönwald, Steinhauser, in preparation

 $B_{\text{exp, avg}}(B \to X_c l \bar{\nu}_l) = (10.48 \pm 0.13) \%$

Bernlochner, MF, Olschwesky, Person, van Tonder, Vos, Welsch, JHEP 10 (2022) 068

CONCLUSIONS

- Numerical methods for solving master integrals
- Auxiliary mass flow (AMFlow)
- > First open-source code Kolya with complete predictions for $B \to X_c l \bar{\nu}_l$.
- > Inclusive V_{cb} fit: updated estimate of th. uncertainties and use $1/m_b^{4,5}$ corrections. > $\Gamma(B_a)$: significant reduction of the theoretical unc. after inclusion of NNLO
- corrections to O_1 and O_2 .
- ► In progress: Update of the lifetime predictions.
- ► Improved accuracy opens the possibility to use $\tau(B_q)$ in the global fits for V_{cb} .

> New calculations made possible by recent developments in multi-loop techniques:

BACKUP

NUMERICAL EVALUATION OF MASTER INTEGRALS

Solving master integrals: method of differential equations

Kotikov, Phys. Lett. B 254 (1991) 158; Gehrmann, Remiddi, Nucl. Phys. B 580 (2000) 485

[and $\epsilon = (d - 4)/2$]

F. Moriello, JHEP 01, 150 (2020).

MF, Lange, Schönwald, Steinhauser JHEP 09 (2021) 152

Hidding, Comput.Phys.Commun. 269 (2021) 108125

Armadillo, Bonciani, Devoto, Rana, Vicini, Comput.Phys.Commun. 282 (2023) 108545

APPLICATIONS

Several approaches

- DESS Lee, Smirnov, Smirnov, JHEP 03 (2018) 008

Hidding, Comput.Phys.Commun. 269 (2021) 108125

Armadillo, Bonciani, Devoto, Rana, Vicini, Comput.Phys.Commun. 282 (2023) 108545

Expand and match

MF, Lange, Schönwald, Steinhauser JHEP 09 (2021) 152

Heavy-quark form factors at $O(\alpha_s^3)$

MF, Lange, Schönwald, Steinhauser Phys.Rev.Lett. 128 (2022) 17; Phys.Rev.D 106 (2022) 3, 034029; Phys.Rev.D 107 (2023), 094017

also application to NRQCD

Egner, **MF,** Lange, Piclum, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 5, 054033, Phys.Rev.D 105 (2022) 11, 114007

Fix all external kinematics to numerical values s = 2, t = 1/10, m = 1, etc

Precise numerical evaluation of boundary conditions

INSTALLATION

\$: git clone <u>https://gitlab.com/vcb-inclusive/kolya.git</u> \$: cd kolya

\$: pip3 install.

import kolya [1]: **import** numpy **as** np

Physical parameters

Physical parameters like quark masses like $m_b^{
m kin}(\mu_{WC})$, $\overline{m}_c(\mu_c)$ and $lpha_s(\mu_s)$ are declared in the class parameters.physical_parameters . Initialization set default values

```
par = kolya.parameters.physical_parameters()
[2]:
     par.show()
                  mbkin( 1.0 GeV) = 4.563 GeV
     bottom mass:
                       mcMS(3.0 GeV) = 0.989 GeV
     charm mass:
     coupling constant: alpha_s(4.563 \text{ GeV}) = 0.2182
    internally use CRunDec. For instance, we set the quark masses at a scale \mu_{WC}=\mu_c=2 GeV in the following way:
[3]: par = kolya.parameters.physical_parameters()
     par.FLAG2023(scale_mcMS=2.0, scale_mbkin=2.0)
     par.show()
                        mbkin( 2.0 GeV)
                                             = 4.295730717092438
     bottom mass:
     charm mass:
                        mcMS( 2.0 GeV)
     coupling constant: alpha_s( 4.563 GeV) = 0.21815198098622618
```

In order to set the quark masses at scales different from the default ones in a consistent way, we include the method FLAG2023 which

GeV = 1.0940623249384822 GeV

HQE parameters

Non-perturbative matrix elements in the HQE are declared in the class parameters.HQE_parameters. This class is defined in the historical basis of hep-ph/1307.4551. By default they are initalized to zero. We can set their values in the following way

```
[4]: hqe = kolya.parameters.HQE_parameters(
         muG = 0.306,
         rhoD = 0.185,
         rhoLS = -0.13,
         mupi = 0.477,
     hqe.show()
     mupi = 0.477 GeV^2
         = 0.306 \text{ GeV}^2
     muG
     rhoD = 0.185 GeV^{3}
     rhoLS = -0.13 GeV^3
    hqe.show(flagmb4=1)
[5]:
     mupi = 0.477 GeV^2
     muG = 0.306 GeV^2
     rhoD = 0.185 GeV^{3}
     rhoLS = -0.13 GeV^3
          0
             GeV^4
     m1 =
     m2 = 0
             GeV^4
             GeV^4
     m3 = 0
             GeV^4
     m4 = 0
     m5 = 0 GeV^{4}
     m6 = 0 GeV^{4}
     m7 =
              GeV^4
           0
             GeV^4
     m8 =
           0
     m9 = 0
             GeV^4
```


Wilson coefficients

The Wilson coefficients in the effective Hamiltonian are declared in the class parameters.WCoefficients. They are initialized to zero and can be set in the following way

```
[6]: wc = kolya.parameters.WCoefficients(
    VL = 0,
    VR = 0,
    SL = 0.1,
    SR = 0.1,
    T = 0,
    )
wc.show()
C_{V_L} = 0
C_{V_R} = 0
C_{V_R} = 0.1
C_{S_L} = 0.1
C_{T} = 0.1
```


Total Rate

We define the total rate as

 $\Gamma_{
m sl}=rac{G_I}{2}$

The coefficients X is a function of the quark masses, α_s , the HQE parameters and the Wilson coefficients. It is evaluated by the function X_Gamma_KIN_MS(par, hqe, wc)

```
[5]: hqe = kolya.parameters.HQE_parameters(
    muG = 0.306,
    rhoD = 0.185,
    rhoLS = -0.13,
    mupi = 0.477,
    )
    wc = kolya.parameters.WCoefficients()
    kolya.TotalRate.X_Gamma_KIN_MS(par,hqe,wc)
```

[5]: 0.539225163728085

The branching ratio is given by the function BranchingRatio_KIN_MS(Vcb,par,hqe,wc)

[6]: Vcb = 42.2e-2
kolya.TotalRate.BranchingRatio_KIN_MS(Vcb,par,hqe,wc)

[6]: 10.555834162102016

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

$$rac{2}{F}(m_b^{
m kin})^5 \over 192\pi^3} |V_{cb}|^2 X$$

Centralized q^2 moments

first centralized moment is calculated as follows:

q2cut = 8.0 # GeV^2 [6]: kolya.Q2moments.moment_1_KIN_MS(q2cut,par,hqe,wc)

[6]: 8.996406491856465

The result for the moment $\langle q^{2n}
angle$ is in GeV 2n

Centralized electron energy moments

 E_l moments are evaluated with Elmoments.moment_n_KIN_MS(Elcut, par, hqe, wc), where $E_{\rm cut}$ must be provided in GeV. The first centralized moment is calculated as follows:

[9]: elcut = 0.5 # GeV kolya.Elmoments.moment_1_KIN_MS(elcut,par,hqe,wc)

[9]: 1.4192938891883413

The result for $\langle E_l^n
angle$ is in GeV n

Centralized M_X^2 moments

 M_X^2 moments are evaluated with MXmoments.moment_n_KIN_MS(El_cut, par, hqe, wc), where $E_{
m cut}$ must be provided in GeV. The first centralized moment is calculated as follows:

[13]: elcut = 0.5 #GeV kolya.MXmoments.moment_1_KIN_MS(elcut,par,hqe,wc)

[13]: 4.492408891792521

The result for $\langle M_X^{2n}
angle$ is in GeV 2n

Q2 moments are evaluated with Q2moments.moment_n_KIN_MS(q2cut, par, hqe, wc), where $q_{
m cut}^2$ must be provided in GeV 2 . The

NONLEPTONIC DECAYS AND γ_5

 $\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{q_{1,3}=u,c} \sum_{q_2=d,s} \lambda_{q_1q_2q_2} \left(C_1(\mu_b) O_1^{q_1q_2q_3} + C_2(\mu_b) O_2^{q_1q_2q_3} \right) + \text{h.c.}$

Traditional basis

Buras, Weisz, NPB 333 (1990) 66

$$O_{1}^{q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\alpha}),$$

$$O_{2}^{q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu}P_{L}b^{\alpha})(\bar{q}_{2}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\beta}),$$

 $\simeq \operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{5})\operatorname{Tr}(\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5})$

Fierz identity in d = 4

$$O_{1}^{q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\alpha})$$
$$= (\bar{q}_{2}^{\alpha}\gamma^{\mu}P_{L}b^{\alpha})(\bar{q}_{1}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\beta}) = O_{2}^{q_{2}q_{1}q_{3}}$$

$$\Gamma^{q_1 q_2 q_3}(\rho) = \tilde{\Gamma}^{q_1 q_2 q_3}(\rho) \Big|_{\tilde{C}_1 \to C_2, \tilde{C}_2 \to \tilde{C}_3}(\rho) \Big|_{\tilde{C}_1 \to C_2, \tilde{C}_3}(\rho) \Big|_{\tilde{C}_1 \to C_2, \tilde{C}_3}(\rho) \Big|_{\tilde{C}_1 \to C_3, \tilde{C}_3}(\rho) \Big|_{\tilde{C}_3}(\rho) \Big|_{\tilde{C}_$$

Fierz identity in d = 4

$$O_{1}^{q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\alpha})$$
$$= (\bar{q}_{2}^{\alpha}\gamma^{\mu}P_{L}b^{\alpha})(\bar{q}_{1}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\beta}) = O_{2}^{q_{2}q_{1}q_{3}}$$

How to preserve Fierz symmetries in dimensional regularisation?

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

$$\Gamma^{q_1 q_2 q_3}(\rho) = \tilde{\Gamma}^{q_1 q_2 q_3}(\rho) \Big|_{\tilde{C}_1 \to C_2, \tilde{C}_2 \to \tilde{C}_3}$$

[INTERLUDE] EVANESCENT OPERATORS

Add and subtract its d = 4 version:

 $\left| \left(\bar{u}(p_c) \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} P_L u(p_b) \right) \left(\bar{u}(p_d) \gamma_{\rho} \gamma_{\nu} \gamma_{\mu} P_L u(p_u) \right) - 4 \left(\bar{u}(p_c) \gamma^{\mu} P_L u(p_b) \right) \left(\bar{u}(p_d) \gamma_{\mu} P_L u(p_u) \right) \right| + 4 \left(\bar{u}(p_c) \gamma^{\mu} P_L u(p_b) \right) \left(\bar{u}(p_d) \gamma_{\mu} P_L u(p_b) \right) \right|$

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

NDR : $\{\gamma^{\mu}, \gamma_{5}\} = 0$

This contraction cannot be reduced in $d \neq 4$

 $\left(\bar{u}(p_c)\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_L u(p_b)\right)\left(\bar{u}(p_d)\gamma_{\rho}\gamma_{\nu}\gamma_{\mu}P_L u(p_u)\right)$

INTERLUDE: EVANESCENT OPERATORS

Add and subtract its d = 4 version:

 $\left| \left(\bar{u}(p_c) \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} P_L u(p_b) \right) \left(\bar{u}(p_d) \gamma_{\rho} \gamma_{\nu} \gamma_{\mu} P_L u(p_u) \right) - (4 + A_0 \epsilon) \left(\bar{u}(p_c) \gamma^{\mu} P_L u(p_b) \right) \left(\bar{u}(p_d) \gamma_{\mu} P_L u(p_u) \right) \right| + (4 + A_0 \epsilon) \left(\bar{u}(p_c) \gamma^{\mu} P_L u(p_b) \right) \left(\bar{u$

NDR : $\{\gamma^{\mu}, \gamma_{5}\} = 0$

This contraction cannot be reduced in $d \neq 4$

 $\left(\bar{u}(p_c)\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_L u(p_b)\right)\left(\bar{u}(p_d)\gamma_{\rho}\gamma_{\nu}\gamma_{\mu}P_L u(p_u)\right)$

SCHEME DEPENDENCE

 $C(M_W, A_0) = C^{(0)}(M_W) + \frac{\alpha_s}{4\pi} C^{(1)}(M_W, A_0) + \dots$

$$= \gamma^{(0)} + \frac{\alpha_s}{4\pi} \gamma^{(1)}(A_0) + \dots$$

$$P = C^{(0)}(\mu_b) + \frac{\alpha_s}{4\pi} C^{(1)}(\mu_b, A_0) + \dots$$
$$F = G^{(0)}(\mu_b) + \frac{\alpha_s}{4\pi} G^{(1)}(\mu_b, A_0) + \dots$$

SCHEME DEPENDENCE

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

Only a proper combination of Wilson coefficients and the matrix element is scheme independent!

PRESERVING FIERZ IDENTITY IN $d \neq 4$

- Fierz identity can be restored order by order in perturbation theory
- Use definition of evanescent operator which preserves a symmetric ADM Buras, Weisz, NPB 333 (1990) 66

 $\gamma_{11} = \gamma_{22} \qquad \gamma_{12} = \gamma_{21}$

 \blacktriangleright Equivalent to require that $O_{\pm} = (O_1 \pm O_2)/2$ do not mix under renormalization.

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

EVANESCENT OPERATORS

 $E_1^{(1),q_1q_2q_3} = (\bar{q}_1^{\alpha}\gamma^{\mu_1\mu_2\mu_3}P_L b^{\beta})(\bar{q}_2^{\beta}\gamma_{\mu_1\mu_2\mu_3}P_L q_3^{\alpha})$ $E_{2}^{(1),q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu_{1}\mu_{2}\mu_{3}}P_{L}b^{\alpha})(\bar{q}_{2}^{\beta}\gamma_{\mu_{1}\mu_{2}\mu_{3}}P_{L}q_{3}^{\beta}$ $E_{1}^{(2),q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}\mu_{5}}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}})$ $E_{2}^{(2),q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}\mu_{5}}P_{L}b^{\alpha})(\bar{q}_{2}^{\beta}\gamma_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}})$

$\hat{\gamma}^{(2)}$ in the CMM basis

Chetyrkin, Misiak, Munz, hep-ph/9711280; Gorbahn, Heisch, hep-ph/0411071

$$B_1 = -\frac{4384}{115} - \frac{38944}{115}$$
$$B_2 = -\frac{38944}{115}$$

M. Fael | OFP2024 | MITP Mainz | Nov 14th 2024

 $\hat{\gamma}^{(2)}$ in the Traditional basis **Impose** $\gamma_{11} = \gamma_{22}, \gamma_{12} = \gamma_{21}$ $-\frac{32}{5}n_f + A_2\left(\frac{10388}{115} - \frac{8}{5}n_f\right)$ $\frac{32}{5}n_f + A_2\left(\frac{19028}{115} - \frac{8}{5}n_f\right)$

