

Event: 912117525 2015-09-24 09:18:55 CEST Interplay between flavour and high energy measurements at colliders

Tamara Vázquez Schröder (IFAE)

Open Questions and Future Directions in Flavour Physics

Mainz - 13 November 2024

The Standard Model of Particle Physics

No gravity!

No verified theory of quantum gravity

No neutrino masses!

Are they Dirac or Majorana particles?

Naturalness!

Higgs field parameters seem highly fine-tuned

No dark matter!

But needed to explain astrophysical observations

No dark energy!

The universe is in accelerated expansion invisible source of energy? Not enough matter-antimatter asymmetry!

To explain dominance of matter today

Why 3 fermion generations?

Underlying symmetry connecting quark and lepton sectors?

Why hierarchical Yukawa coupling?

Why is the top quark so heavy?

Theoretical puzzle: SM flavour

An extensive flavour puzzle...

- Why similar structure of quarks and leptons?
- Why three generations of particles?
- **How** do they get different masses?

<u>Only</u> the Higgs boson can **distinguish** between electron, muon and tau leptons Gives them different **masses**

But... what is the underlying mechanism to do so and assign arbitrary Yukawa coupling?

New physics needed to tell the difference

e vs. µ vs. т u vs. c vs. t

Experimental choice: top quark & b-jets

- If new physics has a Yukawa-like structure, it would couple preferably to **3rd generation** fermions
 - Quarks: top and b quark
- **Top quark**: only quark with y_{top} ~ 1
 - It decays before it can hadronise, t \rightarrow Wb
- The b-quark hadronises and becomes a **b-jet**
 - But special experimentally!
 - b-quarks live long enough (~ps) to create a secondary vertex at the decay
 - Finding these jets from b-quarks is known as *b-tagging*
- In some cases, take advantage of final states with multileptons and multibjets

Interplay flavour and high energy | Mainz 13-11-24 | Tamara Vazquez Schröder

4tops production \rightarrow up to 4 ℓ and 4b-jets!

Experimental puzzle: flavour anomalies in B decays

- Flavour physics provides great potential to explore physics beyond the SM
- Hints for lepton flavour universality violation observed in charged and neutral current processes in B-physics

 $R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+} \tau \nu)}{\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)},$ $\ell = \mu, e$

 τ vs e/ μ

3.3 σ excess in R_D and R_{D*} combination

Interplay flavour and high energy | Mainz 13-11-24 | Tamara Vazquez Schröder

$$R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$$

No longer evidence of µ/e universality violation in updated full Run 1 + Run 2 result and revisited misidentified background estimation in electron mode [LHCb:2212.09153]

Experimental puzzle: flavour anomalies in B decays

- Flavour physics provides great potential to explore physics beyond the SM
- Hints for lepton flavour universality violation observed in charged and neutral current processes in B-physics

still tensions in **angular observables** and **BRs** of $b \rightarrow s\mu^+\mu^-$

Experimental puzzle: flavour anomalies in B decays

- Flavour physics provides great potential to explore physics beyond the SM
- Hints for lepton flavour universality violation observed in charged and neutral current processes in B-physics

- Search for $B^+ \rightarrow K^+ \nu \overline{\nu}$ is unique to Belle II
- Challenge: two neutrinos in the final state
- First evidence of the $B^+ \rightarrow K^+ \nu \overline{\nu}$ decay

Tension with SM of 2.7 σ significance

The versatility of the LHC

The versatility of the LHC + friends

Interplay flavour and high energy | Mainz 13-11-24 | Tamara Vazquez Schröder

9

Can these results be reconciled under a coherent NP explanation?

- Multi-scale UV completion with **flavour non-universal interactions**
 - Explain the origin of the flavour hierarchies

e.g.:

- Allow TeV-scale NP **coupled (mainly) to 3rd gen.** → Higgs sector stabilisation

Interplay flavour and high energy | Mainz 13-11-24 | Tamara Vazquez Schröder

Allwicher, Isidori, Thomsen '20 Davighi & Isidori '23

Simplified models

 The size of the anomalies suggest a tree-level mediator, such as leptoquarks (LQ)

 U_1, U_3 **vector** LQs (spin = 1)

S₁, S₃, R₂ **scalar** LOs (spin =0)

- Leptoquarks: Colour triplet bosons with a *fractional* electric charge, carrying both lepton and baryon number
- Predicted in many grand unified theories (GUT SU(5), Pati-Salam SU(4), RPV SUSY)
 - Can enable violation of lepton flavour universality!
- Only the U₁ vector LQ also gives a flavour universal effect in b→sll via RGE:
 - Study LQ decays into *flavour-diagonal* and *cross- generational* final states

Leptoquark production

large QCD production cross section only depends on m_{LQ} resonant LQs cross section $\propto \lambda^2$ sensitive to higher m_{LQ} for sufficiently high λ Off-shell production $\overline{q} \qquad \ell^+$ LQ

cross section $\propto \lambda^4$ non-resonant sensitive to very high m_{LQ} for sufficiently high λ

Single <u>resonant</u> production

although PDF for leptons inside the proton minuscule, compensated by resonant enhancement

- Couplings determined by the parameter λ ο via
 Yukawa interaction
- Important to search in all production modes and all combinations of & & q in final states!

ATLAS LQ search

- Initially: simplified search strategy targeting specific final states from LQ decays at ATLAS
 - Extended Buchmüller, Rückl, Wyler (BRW) model [Phys. Lett. B 191 (1987) 442]
 - **up** (Q=2/3e) or **down** (Q=-1/3e) type LQs
 - Thorough search for pair production of scalar LQs
- Now: explore scalar & vector (Yang-Mills and Minimal coupling) LQs in all production modes

Explore <u>all</u> types in <u>all</u> production modes

Vector LQs: U₁ (Q=2/3e; decay to bℓ/tν with BR=0.5) or Ũ₁ (Q=5/3e; decay only to tℓ) with Yang-Mills (k=1) or minimal coupling (k=0) to gluons

$$\begin{aligned} \mathcal{L}_{U} &= -\frac{1}{2}U_{\mu\nu}^{\dagger}U^{\mu\nu} + M_{U}^{2}U_{\mu}^{\dagger}U_{\mu} + \mathcal{L}_{an} \\ \text{where} \\ U_{\mu\nu} &= D_{\nu}U_{\mu} - D_{\nu}U_{\mu} \qquad D_{\mu} \equiv \partial_{\mu} - ig_{s}\frac{\lambda^{a}}{2}G_{\mu}^{a} - ig'\frac{2}{3}B_{\mu\nu} \\ \text{and} \\ \mathcal{L}_{an} &= -ig_{s}k_{s}(U_{\mu}^{\dagger}\frac{\lambda^{a}}{2}U_{\nu})G^{\mu\nu^{a}} - ig'\frac{2}{3}k_{Y}U_{\mu}^{\dagger}U_{\nu}B^{\mu\nu} \end{aligned}$$

- Comparison of cross-sections (3rd gen):
 - $\sigma_{YM}(LQ_V) \sim 5\sigma_{MC}(LQ_V) \sim 20\sigma(LQ_{up/down})$ for m(LQ)=1.5 TeV

Scalar LQ single-resonant production Scalar LQ pair-production combination **Vector LQ pair-production combination** 138 fb⁻¹ (13 TeV) Phys. Lett. B 854 (2024) 138736 10⁵ $-\mathcal{B}(LQ_{3}^{u} \rightarrow t\nu)$ $\rightarrow U_1\overline{U_1}$) [fb] Coupling strength $\lambda_{ m b_{t}}$ **CMS** ATLAS ATLAS U_1 pair production \sqrt{s} =13 TeV,139 fb⁻¹ Yang-Mills coupling $\sqrt{s} = 13 \,\text{TeV}, \, 139 \,\text{fb}^{-1}$ 104 2.5 0.8 All Limits at 95% CL — Combined Analysis $LQ_3^u \rightarrow tv/b\tau$ **Observed Limit** Individual Analyses 10³ dd)o $B(LQ_{3}^{u} \rightarrow b\tau) = 1 - 6$ Expected Limit tvtv All contours at 95% CL tvbτ **Observed Limit** 10² bτbτ Expected Limit .5 Phys. Rev. Lett. 132 (2024) 061801 Theory (LO) Expected $\pm 1\sigma$ 10¹ **Combined Analysis** 100 Individual Analyses 0.2 bτbτ Obs. exclusion 95% CL 0.5 10^{-1} tvtv Exp. exclusion 95% CL $\mathcal{B}(U_1 \rightarrow b\tau) = 0.5 = 1 - \mathcal{B}(U_1 \rightarrow t\nu)$ LQ tτbv 0.0 10⁻² _____ 1000 1500 1800 2000 600 800 1000 1200 1400 1600 1800 2000 2200 2400 1200 1400 1600 2000 Leptoquark mass (GeV) m_{U_1} [GeV] mLOy [GeV]

Single/Pair LQ \rightarrow b τ strategy

- Event preselection:
 - $\tau_{had}\tau_{had}$, $\tau_{lep}\tau_{had}$ (lep=e,µ) channels
- ≥1 jets, ≥1 b-jets (p_T>25 GeV)
- Single τ_{had} triggers and single-lepton triggers
- Main backgrounds: Top, Z+jets, Fake τ_{had}
- Event categorisation:
 - High b-jet p_T : ≥ 1 b-jets ($p_T > 200$ GeV)
 - Low b-jet p_T: ≥1 b-jets (**25**<p_T<200 GeV)

ATLAS vs CMS differences

b-jet p⊤

- CMS uses b-jet p_T > 50 GeV; i.e. the "low b-jet p_T ATLAS SR" also may include events that would fall in the "0-bjet CMS SR"
- Targeting single LQ production, but also sensitive to pair and non-resonant production!
- Final discriminating variable: $S_T (=\Sigma(\tau, b_1) p_T + MET)$

Follow-up in progress to estimate contribution from **the LQ interference with the SM**

Single/Pair LQ $\rightarrow b\tau$ SRs

<u>JHEP 10 (2023) 001</u> <u>EXOT-2022-39</u> (Aux Fig)

Single/Pair LQ \rightarrow b τ results (comparison)

ATLAS excludes CMS' excess when considering both low and high b-jet p_T SRs

Single/Pair LQ \rightarrow b τ results (comparison)

ATLAS excludes CMS' excess when considering both low and high b-jet pT SRs

Vector-like leptons

- Hypothetical heavy fermions with both chiralities having the same gauge quantum numbers, and can mix with SM l via the Higgs / W / Z bosons
- VLLs (e', μ' , τ' , $\nu_{e'}$, $\nu_{\mu'}$, $\nu_{\tau'}$) and their associated SM leptons: *identical lepton numbers*
- Multilepton final states: with and without b-jets (from H or Z decay)

Interplay flavour and high energy | Mainz 13-11-24 | Tamara Vazquez Schröder

Vector-like $\tau(\tau')$

- CMS searched for τ' : 100 1045 GeV (125 150 GeV) $m_{\tau'}$ excluded for the doublet (singlet) model scenario
- ATLAS set limits on τ' with full Run 2 dataset: 130-900 GeV $m_{\tau'}$ excluded for the doublet scenario

Signal Regions							
2ℓ SSSF, 1τ	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSOF, 1τ	$2\ell, \geq 2\tau$	$3\ell, \geq 1\tau$	$4\ell, \geq 0\tau$	

- 2ℓ (same-sign, opposite-sign) ⊗ (same-flavour, opposite-flavour); 3ℓ; 4ℓ
- ≥0, 1, or 2 τ_{had}
- Use a Boosted Decision Tree to discriminate between au' and SM

Vector-like electrons / muons

[arXiv <u>2411.07143</u>]

- Final states with two opposite sign, three or four light leptons and jets
- VLLe (VLLµ) targeted in signal regions with at least one pair of same-flavour opposite-sign electrons (muons):
 - 2lOS/3l: dedicated signal-vs-signal-vsbackground NN to define signal regions targeting specific topologies while rejecting SM background
 - 41: cut & count analysis
- Modelling or correction of major SM backgrounds (tī, Z+jets, WZ+light/heavy flavour jets, tīZ, tīW, ZZ)
- Simultaneous profile likelihood fit of BSM signal together with major SM backgrounds
 - Fit variable in SRs: Sum of p_T of leptons (H_T^{lep}) plus missing transverse energy (E_T^{miss})
 - Fit variable in CRs: Number of events (except in WZ+ttZ CR, where N_{b-jets} is used)

Vector-like e/µ: signal regions

[arXiv <u>2411.07143]</u>

No excess observed over the SM background prediction

22OS SRs with dedicated tt NFs

220S SRs with dedicated Z+jets NFs

(A)

3ł SRs

48 SRs

Vector-like e/µ: results

Most stringent limits on VLLe and VLLµ, improving those from Run 1 on the singlet scenario, and setting limits on the doublet scenario for the <u>first time</u>

Interplay flavour and nign energy | wainz 13-11-24 | Jamara vazquez Schröder

Vector-like *ℓ***: summary**

	SU(2) doublet	SU(2) singlet	
VLLe		129 -176 GeV (except 144-164 GeV)	Run 1 ATLAS: JHEP 09 (2015) 108 (no CMS result)
	150 - 1220 GeV	150 - 320 GeV	Run 2 ATLAS: this result [arXiv <u>2411.07143]</u>
VLLµ		114 -168 GeV (except 153-160 GeV)	Run 1 ATLAS: JHEP 09 (2015) 108 (no CMS result)
	150 - 1270 GeV	150 - 400 GeV	Run 2 ATLAS: this result [arXiv <u>2411.07143]</u>
VLL _τ	130 - 900 GeV		Run 2 ATLAS: <u>JHEP 07 (2023) 118</u>
	100 - 1045 GeV	125 - 150 GeV	Run 2 CMS: <u>PRD 105, 112007 (2022)</u>

Interplay flavour and high energy | Mainz 13-11-24 | Tamara Vazquez Schröder

Vector-like *τ* and LQs: 4321 model

- UV-complete 4321 model: <u>arXiv:1808.00942</u>
- Extends the SM with a new symmetry group: $SU(4) \times SU(3)' \times SU(2)_{L} \times U(1)'$
 - 3 heavy gauge bosons: Color octet (G'), Vector LQ (U), Color singlet (Z')
 - VLQ doublets: U/D, C/S, T/B
 - VLL doublets: N_1/E_1 , N_2/E_2 , N_3/E_3
- Can accommodate B-meson anomalies
- VLLs favour **decays via vector LQ U1** into **third generation** quarks and leptons
- Signature with **multiple taus**, **b-jets**, **jets**, **leptons** and **MET**

4321 VLLs: ATLAS strategy

- Signal regions: 0ℓ , $\{1\tau \text{ or } \ge 2\tau\}$, $\ge 3b$
- **Control regions:** $\{1\tau, 2b\}$ or $\{\geq 2\tau, (0b, 1b, 2b)\}$
- Trigger bucket division: E_T^{miss} (MET), singletau (STT), di-tau (DTT), and b-jet (BJET) triggers
- ≥1ℓ channels used to derive tt̄, V+jets, and fake τ corrections
- Norm Factors: tt+LF/c/b, Z+LF/HF, QCD (separated by τ multiplicity and trigger buckets)
- Final simultaneous fit:
 - 1τ SRs split into 3b / ≥4b and MET-STT
 (MST) / BJET
 - Mass-parametrised NN score as discriminating variable

 N_{ℓ}

4321 VLLs: ATLAS results

- **No significant excess** observed for VLL masses between 200 and 1500 GeV
- Highest significance 1.1σ for the 400 GeV mass point
- Observed (expected) 95% CL exclusion limits for VLL mass lower than 910 GeV (970 GeV)

4321 VLLs: ATLAS vs CMS

- Comparison to CMS:
 - CMS also including $0\tau 0\ell$ channels
 - CMS has a 2.8 σ tension with the SM at τ' mass
 = 600 GeV (excesses in the highest DNNtt bins for both the 1τ and 2τ channels, for both 2017 and 2018)
- Significant improvement in sensitivity with ATLAS result
 - Expected exclusion limits for VLL masses lower than 970 (~640) GeV for ATLAS (CMS)

Tau	VLL production	Final	
multiplicity	+ decay mode	state	
	$EE \rightarrow b(t\nu_{\tau})b(t\nu_{\tau})$	$4b+4j+2\nu_{\tau}$	
0τ	$EN \rightarrow b(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 6j + 2\nu_{\tau}$	
	$NN \rightarrow t(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 8j + 2\nu_{\tau}$	
	${ m EE} ightarrow { m b}({ m b} au) { m b}({ m t} u_{ au})$	$4b+2j+\tau+\nu_{\tau}$	
1 -	$\text{EN} \rightarrow b(t\nu_{\tau})t(b\tau)$	$4b + 4j + \tau + \nu_{\tau}$	
1 l	${ m EN} ightarrow { m b}({ m b} au){ m t}({ m t} u_{ au})$	$4b+4j+\tau+\nu_{\tau}$	
	$NN \rightarrow t(b\tau)t(t\nu_{\tau})$	$4b+6j+\tau+\nu_{\tau}$	
	${ m EE} ightarrow { m b}({ m b} au) { m b}({ m b} au)$	$4b + 2\tau$	
2 τ	$EN \rightarrow b(b\tau)t(b\tau)$	$4b + 2j + 2\tau$	
	$NN \rightarrow t(b\tau)t(b\tau)$	$4b+4j+2\tau$	

PLB 846 (2023) 137713

4321 VLLs: exclusions

• Approaching the **1 TeV exclusion** for VLL

Leptoquarks & 4321: implications

III The vector-like fermions

On general grounds, the vector-like fermions are expected to be lighter that the heavy gauge bosons:

 $M_\chi \lesssim 2 \ TeV \qquad \qquad M_{U,G',Z'} \ \sim \ 2-5 \ TeV$

The lightest vector-like (VL) fermions are the VL leptons for which a clear <u>upper bound</u> follows from B_s mixing & R_D :

- New striking collider signature: G' ("coloron") = heavy color octet, coupled mainly to 3rd generation quarks
- Constraints on the scale of the model from pp →tt

tt resonances: analysis strategies

- Recent results on A/H→tt̄ searches from ATLAS and CMS
- Target: production of new heavy scalars and pseudoscalars decaying to tt (2HDMs, hMSSM, 2HDM+a, ALPs, ...)
- Two orthogonal sets of regions: 1ℓ (e or μ) + 2ℓ opposite-sign (ee, eµ, µµ)
 - **2ℓ channel**: m_{IIbb} as proxy for m_{tt}; 1L channel: reconstruct full tt̄ system, m_{tt̄}
 - Resolved: ≥4 small-radius jets assigned via Chi2 algorithm
 - Merged: large variable-radius jet optimised for intermediate top boosts (m_{tt} ~ 1 TeV)
 - **CMS** on the other hand:
 - Reconstructs $m_{t\bar{t}}$ in 2 ℓ channel as well
 - Includes == 3 small-radius jet category for 1ℓ
 - No merged category in 1ℓ channel

- Challenge: strong interference between signal and SM ttbar background
 - Non-trivial to model and treat statistically
 - Interference pattern depends strongly on signal parameters (model dependence!)
 - Low-m_{tt} peak expected even for high resonance masses
 - Especially pronounced for pseudoscalar

tt resonances: discrimination and modelling

- Split resolved signal regions into bins of angular variables sensitive to spin state of the tt system:
 - 1ℓ: cosθ* , 2ℓ: Δφ(ℓℓ)
- Main difference with CMS:
 - CMS has binning in 2½ based on c_{han} and c_{hel}
- SM tī corrected to different higher-order prediction with different reweighting approach
 - ATLAS: { $m_{t\bar{t}}$, $p_T(t)$, $p_T(\bar{t})$ } vs CMS: { $m_{t\bar{t}}$, $cos\theta_t$ }
- Some differences in systematics and correlation scheme
- CMS considers the η_t colour-singlet model

Extract cross section using the η_t colour-singlet model (missing e.g. colour-octet states)

tt resonances: data/background

- Pre-fit **disagreement** in data/background also seen by ATLAS
- After background-only hypothesis fit to data, tension absorbed by tī systematic uncertainties
- Studies of comparison ATLAS vs CMS ongoing

$A/H \rightarrow t\bar{t}$ interpretation

- Tested agreement between data and S+I+B hypotheses with masses [400,1400] GeV and widths [1, 40]%
- Most significant deviation from SM-only (2.3 σ local): m_A = 800 GeV, Γ_A/m_A = 10% and $\sqrt{\mu}$ = 4.0
- Driven by narrow upward fluctuation ~ 800 GeV in merged region
- No exclusion regions calculated for masses < 400 GeV:
 - LO signal model considered bad approximation of actual interference pattern
 - Large k-factors (up to 10 at 350 GeV)

 By introducing the **η**t hypothesis, excess at low m_{tt} at low A/H masses (stronger for A) **no longer present**

Wider tt resonances

Search for wider resonances decaying to tt

- Maximum width probed by A/H→tt̄ (ATLAS) is 40%
- Previous searches looking into g_{KK} (30% max width) with 36/fb Run 2 data or tt
 hadronic resonance search with full Run 2
 (3% max width)
- The search must continue, full Run 2 dataset to be analysed!

tt resonance search in tttt

- Search for top-philic resonances coupling exclusively to top quarks in multi-top-quark final state with 1 lepton
- Resonance constructed in **fully hadronic decay mode** using reclustered jets
 - Main discriminant: resonance top quark pair invariant mass m_{JJ}
- Main background **tt+jets (90%)** is estimated with a dijet fit to the m_{tt} spectrum in data in a signal-depleted source region
 - Extrapolated to the signal regions using ratios of total background m_{JJ} spectra from MC simulation
- No significant excess is observed over the background expectation

Conclusions

- From both the theoretical side and the persistent experimental hints, new physics could have a specific flavour structure
 - Resembling the very hierarchical structure in the Higgs Yukawa couplings? Special role of the 3rd generation fermions?
- Continue the exploration with the continuously incoming data from the LHC, re-interpreting it in **newer ways** than done before!

More material

g2HDM with flavour violation

- What if **flavour changing** neutral Higgs couplings are allowed?
 - extra **sub-TeV** Higgs bosons (H) with extra Yukawa couplings: **ρ**_{tt}, **ρ**_{tu}, **ρ**_{tc}
 - the heavy Higgs sector would be **flavour violating**, resulting in dominant production and decay modes different from the ones that are being searched
 - these scenarios can address several shortcomings of the SM: electroweak baryogenesis, strong CP problem, flavour problem, etc.
 - various references in the literature: [1], [2], [3], [4], [5], [6], [7], [8], [9]

+ similar features to ttw and ttt in multilepton final states

3], [4], [5], [6], [7], [8], [9]

in multilepton final state

g2HDM analysis strategy

- Non-prompt/conversion leptons estimated with an extended template fit method
- NN-based multi-D classification to categorise the different signals (BSM signal A vs BSM signal B):
 - Orthogonal regions are defined for **each signal category (CATs)**, based on lepton, jet and b-jet multiplicities, including pseudo continuous b-tagging scores as input variables
 - Each CAT is also split in ++ and - lepton charges
- A NN is trained in each CAT to discriminate BSM signal vs SM backgrounds
- Simultaneous profile likelihood fit of the BSM signal and some normalisations of SM backgrounds

g2HDM results

- Mild excess observed over the SM with a local significance of 2.8σ for a signal with m_H = 900 GeV and (ρ_{tt}=0.6, ρ_{tc}=0.0, and ρ_{tu}=1.1)
 - Observed charge-asymmetric tensions are accommodated by the best fit g2HDM signal
 - Largest signal contributions in the 2^lSS ++ CAT tttq and the 2^lSS ++ CAT tttt SRs mainly from **ttq and ttt** processes (*excess at high jet multiplicities*)
 - Largest signal contributions in the 2^lSS ++ CAT sstt and the 2^lSS ++ CAT ttq regions mainly from **sstt and ttq** processes (*excess at low jet multiplicities*)

First collider result on general two Higgs doublet model **with flavour violation** and first search to target explicitly BSM production of **ttt**!