Arianna Tinari (University of Zürich)

MITP, Open Questions and Future Directions in Flavor Physics November 7, 2024

Recent theory results on $b \rightarrow s\ell$ $\overline{\rho}$ *ℓ*

Based on [2405.17551,](https://arxiv.org/abs/2405.17551) [2401.18007](https://arxiv.org/abs/2401.18007), [2305.03076](https://arxiv.org/abs/2305.03076) (with Gino Isidori, Zachary Polonsky, Marzia Bordone, Sandro Maechler)

- \rightarrow $b \rightarrow s\bar{\ell}\ell$ decays are very good candidates in the search for BSM.
- ‣ Being suppressed in the SM, they are extremely sensitive to a wide range of NP effects.

- Key decay channels are $B \to K\bar{\ell}\ell\ell, B \to K^*\bar{\ell}\ell\ell, B_s \to \phi\bar{\ell}\ell\ell, B_s \to \bar{\mu}\mu$.
-

Arianna Tinari **Christian Chennis Chennis and Future Directions in Flavor Physics, November 7, 2024**

$$
K^* \overline{\ell} \ell, B_s \to \phi \overline{\ell} \ell, B_s \to \overline{\mu} \mu.
$$

► Observables: branching ratios, (optimized) angular observables $(P_{1,2,3,4,5,6,8}^{(')})$, LFU ratios. 1,2,3,4,5,6,8

> $b \to s \bar{\mu} \mu$ vs $b \rightarrow s \bar{e} e$

Introduction

*E*ff*ective Lagrangian*

 \triangleright Effective description of $b \to s \bar{\ell} \ell^2$ decays below the EW scale:

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 2

$$
\begin{aligned}\n\mathcal{O}_2 &= \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu c_L) (\bar{c}_L \gamma^\mu b_L) \\
\mathcal{O}_4 &= \frac{4\pi}{\alpha_e} (\bar{s}_L^a \gamma^\mu T^a b_L^b) \sum_q (\bar{q}_L^b \gamma^\mu T^a q_L^a) \\
\mathcal{O}_6 &= \frac{4\pi}{\alpha_e} (\bar{s}_L^a \gamma_\mu \gamma_\nu \gamma_\rho T^a b_L^b) \sum_q (\bar{q}_L^b \gamma^\mu \gamma^\nu \gamma^\rho T^a q_R^a) \\
\mathcal{O}_8 &= \frac{g_s}{e^2} m_b (\bar{s}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu} \\
\mathcal{O}_{10} &= (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)\n\end{aligned}
$$

$$
\mathcal{L} = \mathcal{L}_{\text{QCD+QED}}^{[N_f=5]} + \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i \mathcal{O}_i
$$

$$
\mathcal{O}_1 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu T^a c_L) (\bar{c}_L \gamma^\mu T^a b_L)
$$

\n
$$
\mathcal{O}_3 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu b_L) \sum_q (\bar{q}_L \gamma^\mu q_L)
$$

\n
$$
\mathcal{O}_5 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho b_L) \sum_q (\bar{q}_L \gamma^\mu \gamma^\nu \gamma
$$

\n
$$
\mathcal{O}_7 = \frac{m_b}{e} (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}
$$

\n
$$
\mathcal{O}_9 = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)
$$

• General features of $b \to s \bar{\ell} \ell$ branching ratios:

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 3

- \blacktriangleright q^2 is the invariant mass of the lepton pair.
- ‣ Separate tests in the low- or high- q^2 region.
- ‣ Sensitivity to the WCs C_7 , C_9 , C_{10} .

$Experimental$ *results on b* \rightarrow $s\bar{\ell}\ell$

Tension in branching ratios

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 4

‣ Long-standing tension in branching ratios:

Tension in angular observables

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 5

‣ Recent angular analysis by LHCb on *B* → *K***μ*¯*μ* **[***JHEP* **⁰⁹ (2024) 026] see talk by Andrea & Danny**

‣ Long-standing tension in angular observables:

*Shi*ft *in C*⁹

\triangleright The tensions are explainable with a shift in C_9 of around 25 % wrt the SM value*

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 6

[*Eur.Phys.J.C* **83 (2023) 7, 648 Algueró, Biswas, Capdevila, Descotes-Genon, Matias] [***JHEP* **⁰⁵ (2023) 087, Greljo, Salko, Smolkovic, Stangl]**

* this assumes we have good theoretical control over the long-distance contributions in the SM

$$
(\text{Re } C_9^{\text{BSM}}, \text{Re } C_{10}^{\text{BSM}}) \simeq (-1.0, +0.4)
$$

[Gubernari, Reboud, van Dyk, Virto, 2206.03797]

Other fits: Hurth, Mahmoudi et al (1705.06274), Geng, Grinstein et al (1704.05446), Capdevila, Crivellin et al (1704.05340)

 $b \rightarrow s\ell$ $\overline{\rho}$ *ℓ in theory*

- ‣ While LFU ratios are theoretically clean, branching fractions and angular observables are **less clean**, being severely affected by hadronic uncertainties.
- ‣ It's necessary to look at **complementary observables** (different sensitivity to SD/ LD physics and different uncertainties): i**nclusive/exclusive level, low/high** q^2
- ‣ Having control over hadronic uncertainties is necessary if we want to disentangle possible short-distance physics from long-distance dynamics.

Inclusive rate $B \to X_s \bar{\ell} \ell$ at high q^2

$Inclusive B \rightarrow X_s^{\mathbb{Z}}\ell^{\mathbb{Z}}$ at high q^2

- \blacktriangleright The inclusive rate $B\to X_{\!S} \bar\ell\ell^{\ell}$ is treated with an Operator Product Expansion (OPE) in $1/m_b$
- In the **high-** q^2 region:
	- * It is affected by large hadronic uncertainties as it is very sensitive to power corrections in the OPE
	- Breakdown of the OPE \rightarrow becomes an expansion in $\Lambda_{QCD}/(m_b-\sqrt{q^2})$
- \blacktriangleright Normalizing $B \to X_s \bar{\ell} \ell^2 \ell$ to $B \to X_u \ell^2 \bar{\nu}$ reduces these uncertainties

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 8

[Z. Ligeti and F. J. Tackmann, 0707.1694]

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 9

‣ Significant cancellation of non-perturbative uncertainties since **the hadronic structure is very similar** ($b \rightarrow q_{light}$, left-handed current)

$Inclusive$ *B* \rightarrow *X_s* e e *in the SM*

‣ SM prediction for the **inclusive rate:**

and F. J.
\n
$$
\mathcal{R}_{L} = \frac{\alpha_{e}^{2} C_{L}^{2}}{16\pi^{2}}
$$
\n[G.Isidori, Z.
\nPolonsky, AT,
\n2305.03076]
\n
$$
\Delta \mathcal{R}_{[q_{0}^{2}]}
$$
\n
$$
\Delta \mathcal{R}_{[15]} = \frac{\alpha_{e}^{2}}{8\pi^{2}} \Big[C_{V}^{2} + C_{V} C_{L}
$$
\n
$$
+ 0.485 C_{L} + 0.97 C_{V} + 0.93 + \Delta_{\text{n.p.}} + C_{7}(1.91 + 2.05 C_{L} + 4.27 C_{7} + 4.1 C_{V}) \Big]
$$

Change of basis: $\{ \mathcal{O}_9, \mathcal{O}_{10} \} \rightarrow \{ \mathcal{O}_V, \mathcal{O}_L \}$ $\begin{array}{lll} {\cal O}_V=(\overline{s}_L\gamma_\mu b_L)(\overline{\ell}\gamma^\mu\ell)&\qquad C_L=-2C_{10}\\[8pt] {\cal O}_L=(\overline{s}_L\gamma_\mu b_L)(\overline{\ell}_L\gamma^\mu\ell_L)&\qquad C_V=C_9+C_{10} \end{array}$

Inclusive as sum-over-exclusive

 $B \to K \overline{\ell} \ell^2$, $B \to K^* \overline{\ell} \ell^2$, $B \to K \pi \overline{\ell} \ell^2$ (via HHChPT).

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 10

‣ Agreement in the SM between the inclusive rate and the sum over the leading exclusive modes

 $\frac{SM}{15} = (5.07 \pm 0.42) \times 10^{-7}$

 $\frac{SM}{15} = (4.10 \pm 0.81) \times 10^{-7}$

‣ This compatibility opens up the possibility of comparing the inclusive SM prediction and a

sum-over-exclusive experimental result (from LHCb):

$$
\sum_{i} \mathcal{B}(B \to X_s^i \bar{\ell} \ell)^S
$$

$$
\mathcal{B}(B \to X_s \bar{\ell} \ell)^S
$$

$$
B \to K\bar{\ell}\ell = (0.85 \pm 0.05) \times 10^{-7}
$$
\n
$$
B \to K\pi\bar{\ell}\ell = (0.05 \pm 0.09) \times 10^{-7}
$$
\n
$$
B \to K\pi\bar{\ell}\ell = (0.06 \pm 0.05) \times 10^{-7}
$$
\n
$$
B \to K\pi\pi\bar{\ell}\ell = (0.06 \pm 0.05) \times 10^{-7}
$$
\n
$$
B \to K\pi\pi\bar{\ell}\ell = (0.06 \pm 0.05) \times 10^{-7}
$$
\n
$$
B \to K\pi\pi\bar{\ell}\ell = (0.00 \pm 0.04) \times 10^{-7}
$$
\n
$$
B \to K\pi\pi\bar{\ell}\ell = (0.00 \pm 0.04) \times 10^{-7}
$$
\n
$$
B \to K\pi\pi\bar{\ell}\ell = (0.00 \pm 0.04) \times 10^{-7}
$$
\n
$$
B \to K\pi\pi\bar{\ell}\ell = (0.00 \pm 0.04) \times 10^{-7}
$$
\nLHCb, 1408.1137

$$
\longrightarrow \overline{\mathscr{B}(B \to X_s \ell^2 \ell)^{exp}_{[15]}} =
$$

Comparison with data

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 11

- **Confirmation of sizable suppression** on the $b \rightarrow s \bar{\mu} \mu$ rates at low q^2 compared to SM predictions
- Independent verification **not sensitive to uncertainties on the**
	- Sizable uncertainty but mainly ${\sf experimental}$ on $B \to X_u \ell^2 \bar{\nu}$
	- Modification of C_9 of around $25\,\%$ as well

Exclusive modes

* Matrix element for exclusive modes:

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 12

$$
\mathcal{A}(B \to M\ell^+\ell^-) = \frac{G_F \alpha V_{ts}^* V_{tb}}{\sqrt{2}\pi} \Big[(C_9 \ell \gamma^\mu \ell + C_{10} \ell \gamma^\mu \gamma_5 \ell) \langle M | \bar{s} \gamma_\mu P_L b | \bar{B} \rangle - \frac{1}{q^2} \ell \gamma^\mu \ell \ (2im_b C_7 \langle M | \bar{s} \sigma_{\mu\nu} q^\nu P_R b | B \rangle + \mathcal{H}_\mu)
$$

Non-local form factors

matrix elements of the four-quark operators:

 $\mathscr{M}(B \to$

$$
H_{\lambda} \ell \ell)|_{C_{1-6}} = -i \frac{32\pi^2 \mathcal{N}}{q^2} \bar{\ell} \gamma^{\mu} \ell \int d^4 x e^{iqx} \langle H_{\lambda} | T \{ j_{\mu}^{\text{em}}(x), \sum_{i=1,6} C_i \mathcal{O}_i(0) \} | I
$$

 $\sigma_1 = (\bar{s}_L^{\alpha} \gamma_\mu c_L^{\beta})(\bar{c}_L^{\beta} \gamma^\mu b_L^{\alpha}) \qquad \mathcal{O}_2 = (\bar{s}_L \gamma_\mu c_L)(\bar{c}_L \gamma^\mu b_L)$ only \mathscr{O}_1 , \mathscr{O}_2 give a significant contribution

Bharucha, Straub, Zwicky, 1503.05534 Gubernari, Reboud, van Dyk, Virto, 2305.06301

Matrix elements of four-quark operators

- The non-local form factors contain the matrix elements of the **four-quark operators** \mathcal{O}_{1-6} .
- Note that to all orders in $\alpha_{\rm s}$, and to first order in $\alpha_{\rm em}$, **these matrix elements have the same** structure as the matrix elements of \mathscr{O}_7 and \mathscr{O}_9 : 7 and \cup 9

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 13

$$
\mathcal{M}(B \to H_{\lambda} \ell \ell)|_{C_{1-6}} = -i \frac{32\pi^2 \mathcal{N}}{q^2} \bar{\ell} \gamma^{\mu} \ell \int d^4 x e^{iqx} \langle H_{\lambda} | T \{ j_{\mu}^{\text{em}}(x), \sum_{i=1,6} C_{i} \mathcal{O}_{i}(0) \} | B \rangle = \left(\Delta_{9}^{\lambda} (q^2) + \frac{m_B^2}{q^2} \Delta_{7}^{\lambda} \right) \langle H_{\lambda} | \ell^+ \ell^- | \mathcal{O}_9 | B \rangle
$$

The (regular for $q^2 \rightarrow 0$) contributions of the non-local matrix elements of the four-quark operators can be effectively taken into account by a shift in C_9 :

1−6

Therefore, even though the tension with the data could be well described by a shift in C_9 of $\mathscr{O}(25\%)$

$$
C_9 \rightarrow C_9^{\lambda}(q^2) = C_9^{\rm SM} + \Delta_9^{\lambda}(q^2) + C_9^{\rm SD}
$$

with respect to the SM value, **this shift could come from an inaccurate description of the nonlocal matrix elements.**

Non-local contributions

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 14

Pictures from [Ciuchini, Fedele, Franco, Paul, Silvestrini, Valli, 2212.10516]

- ► Studied with light-cone sum rules for $q^2 \ll 4m_c^2$ + dispersion relations to extend to larger values of q^2
- \cdot Also using negative q^2 region to further constrain
- ‣ Unitarity bounds **[Gubernari, van Dyk, Virto, 2011.09813]**
- ‣ Small effect in the large-recoil region **[Gubernari, Reboud, van Dyk, Virto, 2206.03797]**

[Khodjamirian, Mannel, Pivovarov, Wang, 1006.4945]

[Bobeth, Chrzaszcz, van Dyk, Virto, 1707.07305]

*Charm resca*tt*ering*

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 15

‣ As pointed out by **Ciuchini, Fedele, Franco, Paul, Silvestrini, Valli (2212.10516)**, applying dispersive methods could be tricky because the analytic structure is quite involved depending on the external momenta and internal masses.

$$
H_V^- \propto \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7^{\rm SM} + h_-^{(0)} \right) \widetilde{T}_{L-} - 16\pi^2 h \right. \\ \left. + \left(C_9^{\rm SM} + h_-^{(1)} \right) \widetilde{V}_{L-} \right],
$$

\n
$$
H_V^+ \propto \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7^{\rm SM} + h_-^{(0)} \right) \widetilde{T}_{L+} - 16\pi^2 h \right. \\ \left. + h_+^{(1)} q^2 + h_+^{(2)} q^4 \right) + \left(C_9^{\rm SM} + h_-^{(1)} \right) \left. \widetilde{T}_{L0} - 16\pi^2 h_+^{(1)} \right. \\ \left. H_V^0 \propto \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7^{\rm SM} + h_-^{(0)} \right) \widetilde{T}_{L0} - 16\pi^2 h_+^{(1)} \right. \\ \left. + h_0^{(1)} q^2 \right) \right] + \left(C_9^{\rm SM} + h_-^{(1)} \right) \widetilde{V}_{L0} \, .
$$

-
- Parametrization of hadronic contributions rooted on a phenomenological basis -> interplay between NP and hadronic contributions.

*Charm resca*tt*ering*

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 15

$$
H_V^- \propto \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7^{\text{SM}} + h_{-}^{(0)} \right) \widetilde{T}_{L-} - 16\pi^2 h
$$

+ $\left(C_9^{\text{SM}} + h_{-}^{(1)} \right) \widetilde{V}_{L-},$

$$
H_V^+ \propto \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7^{\text{SM}} + h_{-}^{(0)} \right) \widetilde{T}_{L+} - 16\pi^2 \left(H_V^{(1)} + H_{+}^{(1)} q^2 + h_{+}^{(2)} q^4 \right) \right] + \left(C_9^{\text{SM}} + h_{-}^{(1)} \right)
$$

$$
H_V^0 \propto \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7^{\text{SM}} + h_{-}^{(0)} \right) \widetilde{T}_{L0} - 16\pi^2 \sqrt{H_V^2 + h_{-}^{(1)} q^2} \right) + \left(C_9^{\text{SM}} + h_{-}^{(1)} \right) \widetilde{V}_{L0} .
$$

‣ As pointed out by **Ciuchini, Fedele, Franco, Paul, Silvestrini, Valli (2212.10516)**, applying dispersive methods could be tricky because the analytic structure is quite involved depending on the external momenta and internal masses.

- ‣ Parametrization of hadronic contributions rooted on a phenomenological basis -> interplay between NP and hadronic contributions.
- ‣ Analytical structure: an additional singularity in the case of an **anomalous threshold** could move into the q^2 integration domain, requiring a non trivial deformation of the path.
- ‣ **Mutke, Hoferichter, Kubis** *JHEP* **⁰⁷ (2024) ²⁷⁶**: classification of anomalous thresholds in all possible mass configurations for light-quark loops -> contribution as large as 10% of the non-local form factors.
- ‣ For charm loop: it seems to be the moderate case yielding smaller corrections.

*Charm resca*tt*ering*

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 16

- We give an estimate of long-distance effects associated with the rescattering of a charmed and a charmed-strange mesons.
- We look at the simplest rescattering contribution from the leading two-body intermediate state $D_{s}D^{*}$ and $D_{s}^{*}D$.
- ‣ We estimate this diagram using an effective description in terms of hadronic degrees of freedom, using data on $B \to DD^*$ and Heavy Hadron Chiral $\mathsf{Perturbation}$ Theory for the $DD_s^*(D_sD^*)K$ vertex.
- kinematical region introducing appropriate form factors.

• We obtain an accurate description in the low recoil (or high q^2) limit; we extrapolate to the whole

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 17

- Dynamics of $D_{(s)}^{(*)}$ mesons close to their **mass shell, determined by:** (*s*)
	- Lorentz invariance
	- Gauge invariance under QED
	- SU(3) light-flavor symmetry
	- * Heavy-quark spin symmetry
- $\textbf{Weak}\:B \rightarrow DD^*$ transition described **by (using heavy-quark spin symmetry + data)**
- **From HHChiPT** (valid close to endpoint $q^2 \approx m_B^2$): *B*

$$
\begin{split} \mathcal{L}_{D,\text{free}} = & -\frac{1}{2} \big(\Phi^{\mu\nu}_{D^*}\big)^\dagger \Phi_{D^* \, \mu\nu} - \frac{1}{2} \big(\Phi^{\mu\nu}_{D^*_s}\big)^\dagger \Phi_{D^*_s \, \mu\nu} \\ & + \big(D_\mu \Phi_D\big)^\dagger D^\mu \Phi_D + \big(D_\mu \Phi_{D_s}\big)^\dagger D^\mu \Phi_{D_s} \\ & + m_D^2 \big[\big(\Phi^{\mu}_{D^*}\big)^\dagger \Phi_{D^* \, \mu} + \big(\Phi^{\mu}_{D^*_s}\big)^\dagger \Phi_{D^*_s \, \mu}\big] \\ & - m_D^2 \big[\Phi_D^\dagger \Phi_D + \Phi_{D_s}^\dagger \Phi_{D_s}\big] + \text{h.c.} \,. \end{split}
$$

$$
\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu \dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}
$$
\n
$$
g_{DD^*} = \sqrt{2} G_F \left| V_{tb}^* V_{ts} \right| m_B m_D \bar{g} \qquad \bar{g} \approx 0.04 \qquad \text{In priori}
$$
\n
$$
g_{DD^*} \cos \theta_{\text{have a point}}
$$

$$
\mathcal{L}_{DK} = \frac{2ig_{\pi}m_D}{f_K} \left(\Phi_{D^*}^{\mu \dagger} \Phi_{D_s} \partial_{\mu} \Phi_K^{\dagger} - \Phi_D^{\dagger} \Phi_{D_s^*}^{\mu} \partial_{\mu} \Phi_K^{\dagger} \right) + \text{h.c.}
$$

Form factors

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 18

$$
e \to eF_V(q^2) , \qquad F_V(q^2) = \frac{m_{J/\psi}^2}{m_{J/\psi}^2 - q^2}
$$

- Correction for **QED vertex** (using Vector Meson Dominance):
- Correction for *DD***K* **vertex**:

$$
\frac{1}{f_K} \to \frac{1}{f_K} G_K(q^2),
$$

$$
G_K(q^2) = \frac{1}{1 + E_K(q^2)/f_K} = \frac{2m_B f_K}{2m_B f_K + m_B^2 - q^2}
$$

Useful consistency check: G_K has a similar scaling to the vector form factor $f_+(q^2)$ for $B_0\to K_0$

In order to obtain a reliable estimate **over the entire kinematical range,** we introduce the following form factors:

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 19

- ‣ We compute the **one-loop diagrams** appearing in the model presented.
- \triangleright In the $SU(3)$ -symmetric limit, the diagrams obtained by swapping $D_{\scriptscriptstyle S}^{(*)} \leftrightarrow D^{(*)}$ are symmetric.

$$
\mathcal{M}_{\rm LD} = -\frac{eg_{DD^*}g_{\pi}F_V(q^2)G_K(q^2)}{8\pi^2f_Km_D}(p_B \cdot j_{\rm em}) \times \left[(2+L_{\mu}) - \delta L(q^2, m_B^2, m_D^2) \right],
$$

‣ Compare it to the **short-distance matrix elemen**t:

$$
L_{\mu} = \log(\mu^2/m_D^2)
$$

\n
$$
\delta L(q^2, m_B^2, m_D^2) = \frac{L(m_B^2, m_D^2) - L(q^2, m_D^2)}{q^2 - m_B^2},
$$

\n
$$
L(x, y) = \log\left(\frac{2y - x + \sqrt{x(x - 4y)}}{2y}\right)
$$

\n
$$
\times \left[\sqrt{x(x - 4y)} + y \log\left(\frac{2y - x + \sqrt{x(x - 4y)}}{2y}\right)\right]
$$

$$
{\cal M}_{\rm SD} = \frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} V_{tb}^* V_{ts}(p_B\cdot j_{\rm em}) f_+(q^2) (2C_9)
$$

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 20

‣ Ratios of long-distance vs short-distance matrix elements:

- ‣ LD contributions don't exceed a few percent relative to the SD one.
- to the kinematical regions where the internal mesons go on-shell.

 \triangleright The absorptive part is finite and corresponds to the discontinuity of the amplitude corresponding

*E*ff*ective shi*ft *in C*⁹

• We can encode the effect of the \mathcal{M}_{ID} via

$$
\delta C_{9,DD^*}^{\rm LD}(q^2,\mu)=\bar{g}\,\Delta(q^2)\Big[2+L_\mu-\delta L(q^2,m_B^2,m_D^2)\Big]\hspace{1cm}\Delta(q^2)=-\frac{g_\pi m_B F_V(q^2)G_K(q^2)}{2f_K f_+(q^2)}
$$

 \triangleright Averaging over the low- and high- q^2 regions, we find: $\delta \bar{C}_{9,DD^*}^{\text{LD,low}}(\mu) = -0.003 - 0.059 i - 0.156 \log \left(\frac{\mu}{m_D} \right)$

$$
\delta\bar{C}_{9,DD^*}^{\rm LD,high}(\mu) = 0.009 + 0.05
$$

• Varying the renormalization scale μ in the range $[1,4]$ GeV:

$$
|\delta\bar C_{9,DD^*}^{\rm LD}| \leq 0.11 \quad \longrightarrow
$$

a
$$
q^2
$$
–dependent shift in C_9 :

 $0.053\,i + 0.063\log\left(\frac{\mu}{m_D}\right).$

$$
\frac{\delta C_9}{C_9^{SM}} \approx 2.5\,\%
$$

Additional intermediate states

$$
\mathcal{N} = \frac{\sum_X \mathcal{M}(B^0 \to X)}{\mathcal{M}(B^0 \to D^*D_s) + \mathcal{M}(B^0 \to DD_s^*)} = \approx \frac{1}{2} \sum_X \sqrt{\frac{\mathcal{B}(B^0 \to X)}{\mathcal{B}(B^0 \to DD_s^*)}} \approx 3
$$

$$
\longrightarrow \ | \delta C_9^{\rm LD} | \leq {\cal N} | \delta \bar C_{9,DD^*}^{\rm LD} | \leq 0.33 \ \longrightarrow
$$

- \triangleright So far we focused on the $D^*D_{\mathcal{S}}$ or $D^*_\mathcal{S}D$ intermediate states, but in principle there are other states with $\bar{c}c\bar{s}d$ valence structure.
-
- ‣ Conservative **multiplicity factor** accounting for all possible intermediate states:

‣ Consider all intermediate states the allow parity-conserving strong interactions with the kaon:

$$
\frac{\delta C_9}{C_9^{SM}} \approx 8 - 10\%
$$

Fit of C₉ from
exclusive modes

Sign of δC_9

of C_9 at low- and high- q^2 provides a useful data-driven check for such long-distance contributions. C_9 at low- and high- q^2

• The sign of δC_9 is **opposite** in the two cases (regardless of the phase of g_{DD*}): comparing the extraction

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 23

Sign of δC_9

- The sign of δC_9 is **opposite** in the two cases (regardless of the phase of g_{DD*}): comparing the extraction of C_9 at low- and high- q^2 provides a useful data-driven check for such long-distance contributions. C_9 at low- and high- q^2
-

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 23

$$
C_9 \rightarrow C_9^{\lambda}(q^2) + Y_{q\bar{q}}^{[0]}(q^2) + Y_{b\bar{b}}^{[0]}(q^2) + Y_{c\bar{c}}^{\lambda}(q^2)
$$
\n4

\nencodes (factorizable)

\nperturbative contributions from 4-quark operators

\n
$$
\overline{C}
$$

\nresonances

 \triangleright We extract the residual contribution to C_9 from data:

 \triangleright We perform a fit of C_9 from the branching ratio and angular observables in $B\to K^*\bar\mu\mu$, assuming: 2023 CMS 2016 and 2020 LHCb

> To estimate the non-perturbative contributions generated by the $c\bar{c}$ resonances, we use dispersive relations in combination with data:

$$
Y_{c\bar{c}}^{\lambda}(q^2) = Y_{c\bar{c}}^{\lambda}(q_0^2) + \frac{16\pi^2}{\mathcal{F}_{\lambda}(q^2)} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^2), q_0^2 = 0
$$

\n
$$
\Delta \mathcal{H}_{c\bar{c}}^{\lambda,1P} = \sum_{V} \eta_{V}^{\lambda} e^{i\delta_{V}^{\lambda}} \frac{q^2}{m_V^2} A_{V}^{\text{res}}(q^2) \qquad A_{V}^{\text{res}}(q^2) = \frac{m_V \Gamma_V}{m_V^2 - q^2 - im_V \Gamma_V}
$$

\n
$$
C_9^{\lambda}(q^2) = C_9^{\text{SM}} + C_9^{\text{LD},\lambda}(q^2) + C_9^{\text{SD}}
$$

\n**Short-distance,**
\nLong-distance, no reason to assume it
\nis independent of λ or q^2

2014 LHCb,

Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 24

			q^2 (GeV ²)	C_9^K (LHCb)	C_9^K (CMS)
	q^2 (GeV ²)	C_9^K	[15, 16]	$1.8^{+0.8}_{-1.8}$	$1.4^{+0.9}_{-1.4}$
	[1.1, 2]	$1.9^{+0.5}_{-0.8}$	[16, 17]	$2.1^{+0.7}_{-1.0}$	$1.9^{+0.8}_{-1.9}$
	[2,3]	$3.2^{+0.3}_{-0.4}$	[17, 18]	$2.9^{+0.5}_{-0.5}$	$3.0^{+0.5}_{-0.6}$
	[3,4]	$2.6^{+0.4}_{-0.5}$	[18, 19]	$2.7^{+0.6}_{-0.5}$	
	[4,5]	$2.1^{+0.5}_{-0.7}$	$\left[18,19.24\right]$		$2.9^{+0.6}_{-0.7}$
	[5,6]	$2.4^{+0.4}_{-0.6}$	[19, 20]	$0^{+1.6}_{-0}$	
	[6,7]	$2.6^{+0.4}_{-0.5}$	[20, 21]	$1.4^{+0.9}_{-1.4}$	
	[7,8]	$2.3^{+0.5}_{-0.7}$	[21, 22]	$3.2^{+0.8}_{-0.9}$	
	constant	$2.4^{+0.4}_{-0.5}$ $(\chi^2/\text{dof} = 1.35)$	[19.24, 22.9]		$2.5^{+0.7}_{-1.0}$
			constant		$2.6 \pm 0.4 \ (\chi^2/\text{dof} = 1.06)$

Table 3.3: Determinations of C_9 from $B \to K\mu^+\mu^-$ in the low- q^2 (left) and high- q^2 (right) regions. The p-values for the constant fits are 0.17 (low-q²) and 0.39 (high-q²).

$Results$ *for* $B \rightarrow K\overline{\mu}\mu$

[M. Bordone, G.Isidori, S. Mächler, AT, [2401.18007](https://arxiv.org/abs/2401.18007)]

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 25

Importance of extracting the value of C_9 at **different values of** *q*2

 $C_9 = 3.40^{+0.16}_{-0.16}$ (χ^2 /*dof* = 1.5)

The shift in C_9 we find from charm rescattering $+$ NP shift of \sim -1 gives a better global fit than a shift of \sim -1

 $Results$ *for* $B \rightarrow K^* \bar{\mu} \mu$

Using resonance parameters found by LHCb recently (2405.17347)

Summary

- Non-local contributions in $b\to s\ell\ell'$ could significantly impact the extraction of $C_9.$
- We have presented an estimate of $B^0 \to K^0 \bar\ell\ell\ell$ long-distance contributions induced by the rescattering of a charmed and a charmed-strange meson;
- large.
	- * The multiplicity factor needs to be better understood;
	- photon couplings).
- Going forward:
	- Experimental level: measure D–meson form factors (to follow Mutke, Hoferichter, Kubis's approach), $B\to K^{(*)}D\bar{D}$, differential information to disentangle phases and relative importance of decay mechanisms, extraction of C_9 at different values of C_9 at different values of q^2

 Arianna Tinari Open Questions and Future Directions in Flavor Physics, November 7, 2024 26

 $b\to s\bar{\ell}\ell^{\prime}$ could significantly impact the extraction of C_9

* For the particular intermediate state we considered, charm rescattering contributions don't seem to be very

We neglected some effects ($SU(3)$ breaking effects, higher-mass charmonium resonances, higher-multipole

Theoretical level: extension of known methods, combinations and comparisons, something else? Lattice? ✖

Thank you for your attention!

*KDD** *DDγ* and *DDγK*

$\frac{{\rm d}^4\Gamma}{{\rm d} q^2\,{\rm d}\cos\theta_\ell\,{\rm d}\cos\theta_K\,{\rm d}\phi} = \; \frac{9}{32\pi}\,\Bigl[\, I_1^s\sin^2\theta_K + I_1^c\cos^2\theta_K \; +$

-
- $I_2^s \sin^2 \theta_K \cos 2\theta_\ell + I_2^c \cos^2 \theta_K \cos 2\theta_\ell +$
- $I_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + I_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi$
- $I_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + I_6 \sin^2 \theta_K \cos \theta_\ell +$
- $I_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + I_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi +$
- $I_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$,

$$
Y^{\lambda}(q^2)|_{\alpha_s^0} = Y_{\mathbf{q}\bar{\mathbf{q}}}^{[0]}(q^2) + Y_{\mathbf{c}\bar{\mathbf{c}}}^{[0]}(q^2) + Y_{\mathbf{b}\bar{\mathbf{b}}}^{[0]}(q^2) \,, \tag{2.14}
$$

where

$$
Y_{\text{q}\bar{\text{q}}}^{[0]}(q^2) = \frac{4}{3}C_3 + \frac{64}{9}C_5 + \frac{64}{27}C_6 - \frac{1}{2}h(q^2, 0)\left(C_3 + \frac{4}{3}C_4 + 16C_5 + \frac{64}{3}C_6\right),
$$

\n
$$
Y_{\text{c}\bar{\text{c}}}^{[0]}(q^2) = h(q^2, m_c)\left(\frac{4}{3}C_1 + C_2 + 6C_3 + 60C_5\right),
$$

\n
$$
Y_{\text{b}\bar{\text{b}}}^{[0]}(q^2) = -\frac{1}{2}h(q^2, m_b)\left(7C_3 + \frac{4}{3}C_4 + 76C_5 + \frac{64}{3}C_6\right),
$$

with

$$
h(q^2, m) = -\frac{4}{9} \left(\ln \frac{m^2}{\mu^2} - \frac{2}{3} - x \right) - \frac{4}{9} (2 + x) \begin{cases} \sqrt{x - 1} \arctan \frac{1}{\sqrt{x - 1}}, & x = \frac{4m^2}{q^2} > 1, \\ \sqrt{1 - x} \left(\ln \frac{1 + \sqrt{1 - x}}{\sqrt{x}} - \frac{i\pi}{2} \right), & x = \frac{4m^2}{q^2} \le 1. \end{cases}
$$

Matrix elements

$$
\mathcal{M}\left(B \to K\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}\left[C_{9} + \frac{2m_{b}}{m_{B} + m_{K}} \frac{f_{T}(q^{2})}{f_{+}(q^{2})} C_{7}\right] f_{+}(q^{2}) (p_{B} + p_{K})_{\mu} \bar{\ell} \gamma^{\mu} \ell
$$
\n
$$
\mathcal{M}\left(B \to K^{*}\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}\left\{\n\begin{aligned}\n& -\left[C_{9} + \frac{2m_{b}(m_{B} + m_{K^{*}})}{q^{2}} \frac{T_{1}(q^{2})}{V(q^{2})} C_{7}\right] \frac{2V(q^{2})}{m_{B} + m_{K^{*}}} i\epsilon_{\mu\nu\rho\sigma} (\epsilon^{*})^{\nu} p_{B}^{\rho} p_{K^{*}}^{\sigma} \\
& -\left[C_{9} + \frac{2m_{b}(m_{B} + m_{K^{*}})}{q^{2}} \frac{T_{2}(q^{2})}{A_{2}(q^{2})} C_{7}\left(1 + O\left(\frac{q^{2}}{m_{B}^{2}}\right)\right)\right] \frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}} (\epsilon^{*} \cdot q) (p_{B} + p_{K^{*}})_{\mu} \\
& + \left[C_{9} + \frac{2m_{b}(m_{B}^{2} - m_{K^{*}})}{q^{2}} \frac{T_{2}(q^{2})}{A_{1}(q^{2})} C_{7}\right] A_{1}(q^{2}) (m_{B} + m_{K^{*}}) \epsilon_{\mu}^{*}\right\} \bar{\ell} \gamma^{\mu} \ell,
$$
\n(2.8)

• Fit of C_V , C_L from SM prediction on inclusive rate to experimental semi-inclusive determination

• Perturbative and non-perturbative corrections due to charmrescattering can be accounted for via a modification of $C_V^{}$

• If $C_L = C_L^{\text{SM}}$, C_V needs a large correction ($\sim 25\,\%$) to explain the data, and it is unlikely that charm re-scattering effects are so large in the high- q^2 region

• Modification of both C_V and C_L could explain well the data possible small LFU-violating amplitude (assuming LF non-universal modification to $C_{L\!})$

• SM point not included within 2*σ*

Model Comparison inclusive with data