(D)DVCS at the Precision Frontier

V. M. BRAUN

University of Regensburg

MITP, Mainz, 30.10.2024

s Three

Threshold logarithms

NNLO evolution

Outlook

Nucleon Tomography

access to three-dimensional picture of the nucleon (M. Burkardt)

\hookrightarrow first two moments of transverse spin parton density

computer simulations:

M. Göckeler et al., PRL 98 (2007) 222001

• Momentum transfer t defines the resolution of spacial imaging

O CFs

Threshold logarithms

NNLO evolution

Wealth of new data

- High statistical accuracy
- Several beam energies
- Neutron/deuteron
- Coherent DVCS from ⁴He
- Transverse polarization

2010 data of E07-007 and E08-025 [2109.02076]

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook
In this tal	k, a status upo	date:			

Towards NNLO accuracy

- Two-loop coefficient functions for DVCS
- Three-loop evolution equations for GPDS
- $\bullet\,$ new: Two-loop coefficient functions for DDVCS $\,\checkmark\,$

```
(flavor nonsinglet)
(flavor nonsinglet, vector)
```

 \checkmark

② Resummation of threshold logarithms in DVCS and (new) DDVCS \checkmark

- **3** Kinematic power corrections $(\sqrt{-t}/Q)^k$, $(m/Q)^k$
 - Twist-four corrections, $(\sqrt{-t}/Q)^2$, $(m/Q)^2$
 - $\bullet\,$ new: Twist-six corrections, $(\sqrt{-t}/Q)^3$, $(m/Q)^4$ $\,$ $\,$ $\,$

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook

NNLO coefficient functions

To the leading-twist accuracy

$$\mathcal{A}_{\mu\nu}^{\rm DVCS} = -g_{\mu\nu}^{\perp} V + \epsilon_{\mu\nu}^{\perp} A + \dots$$
$$V(\xi, Q^2) = \sum_q e_q^2 \int_{-1}^{1} \frac{dx}{\xi} C_V(x/\xi, Q^2/\mu^2) F_q(x, \xi, t, \mu) \,.$$

$$F_q(x,\xi) = \frac{1}{2P_+} \left[H_q(x,\xi,t)\bar{u}(p')\gamma_+ u(p) + E_q(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\nu}\Delta_{\nu}}{2m_N}u(p) \right].$$

- $C_{V(A)}$ are functions of one variable x/ξ
- real functions for $|x| < \xi$
- can be continued analytically to $|x/\xi| \ge 1$ using $\xi \to \xi i\epsilon$ prescription
- $-C_V(-x/\xi) = -C_V(x/\xi), \quad C_A(-x/\xi) = +C_A(x/\xi)$

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook

In perturbation theory

$$\begin{split} C(x/\xi,Q^2/\mu^2) &= C^{(0)}(x/\xi) + a_s C^{(1)}(x/\xi,Q^2/\mu^2) + a_s^2 C^{(2)}(x/\xi,Q^2/\mu^2) + \dots \qquad a_s = \frac{\alpha_s(\mu)}{4\pi} \\ \text{with, e.g., flavor-nonsinglet} & \text{X. D. Ji and J. Osborne, PRD 57, 1337 (1998)} \\ C_V^{(0)}(x/\xi) &= \frac{\xi}{\xi - x} - \frac{\xi}{\xi + x} , \\ C_V^{(1)}(x/\xi,1) &= \frac{2C_F\xi}{\xi - x} \left[-\frac{9}{2} - \frac{1}{2}\ln^2 2 + \left[\frac{1}{2}\ln\left(1 - \frac{x}{\xi}\right) - \frac{3}{2}\frac{\xi - x}{\xi + x} \right] \ln\left(1 - \frac{x}{\xi}\right) \right] - (x \leftrightarrow -x) . \\ C_A^{(1)} \text{ known from} & \text{E. Braaten, PRD28, 524 (1983)} \end{split}$$

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook

Recent: two-loop CFs

• Flavor-nonsinglet calculated using two different techniques

$C_V^{(2)}$:	V.Braun, A.Manashov, S.Moch, J.Schönleber, JHEP 09 , 117 (2020) J. Schönleber, unpublished
$C_{A}^{(2)}$:	V.Braun, Manashov, Moch, Schönleber, 2106.01437
A	J.Gao, T.Huber, Y.Ji and Y.M.Wang, 2106.01390

• Flavor-singlet CFs:

 $C_V^{(2)}$:V.Braun, Y. Ji, J. Schönleber, PRL 129 172001 (2022) $C_A^{(2)}$:Y. Ji, J. Schönleber, JHEP 01 (2024) 053

• Heavy-quark contrubutions only known to one loop accuracy J.D. Noritzsch, PRD **69** 094016 (2004)

Example (flavor-nonsinglet)

NNLO CFs

$$C_V^{(2)}(x) = C_F^2 C_P^{(2)}(x) + \frac{C_F}{N_c} C_{NP}^{(2)}(x) + \beta_0 C_F C_{\beta}^{(2)}(x)$$

$$\begin{split} C_{NP}^{(2)} &= 6(1-2\omega) \bigg\{ \mathrm{H}_{20} - \mathrm{H}_{3} + \mathrm{H}_{110} - \mathrm{H}_{12} + \zeta_{2} \Big(\mathrm{H}_{0} + \mathrm{H}_{1} \Big) - 3\zeta_{3} \bigg\} \\ &+ 12 \Big(\mathrm{H}_{10} - \mathrm{H}_{2} - \mathrm{H}_{0} - \mathrm{H}_{1} + \zeta_{2} \Big) + \frac{3}{\omega} \mathrm{H}_{0} + \frac{3}{\omega} \mathrm{H}_{1} \\ &+ \bigg\{ \frac{1}{\omega} \Big(12\zeta_{3} - \frac{3}{2}\zeta_{2}^{2} - \frac{5}{2}\zeta_{2} - \frac{73}{24} \Big) - \frac{3}{\omega} \mathrm{H}_{200} - \Big(\frac{2}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_{30} + \Big(\frac{4}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_{4} \\ &- \Big(\frac{2}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_{210} + \Big(\frac{3}{\omega} - \frac{2}{\omega} \Big) \mathrm{H}_{22} - \Big(\frac{2}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_{31} - \frac{5}{\omega} \mathrm{H}_{3} + \frac{5}{\omega} \mathrm{H}_{20} \\ &+ \Big(\frac{1}{\omega} \Big(\zeta_{2} - \frac{9}{2} \Big) + \frac{1}{\omega} \Big(\frac{4}{3} - 2\zeta_{2} \Big) \Big) \mathrm{H}_{00} - \Big(\frac{2}{\omega} \Big(\zeta_{2} - 1 \Big) - \frac{1}{\omega} \Big(\zeta_{2} + \frac{7}{6} \Big) \Big) \mathrm{H}_{2} \\ &+ \Big(\frac{1}{\omega} \Big(\frac{19}{6} + 5\zeta_{2} - 3\zeta_{3} \Big) + \frac{1}{\omega} \Big(7\zeta_{3} - \frac{16}{9} \Big) \Big) \mathrm{H}_{0} - (\omega \leftrightarrow \bar{\omega}) \bigg\} \end{split}$$

where $\omega=(1-x)/2,\, ar{\omega}=(1+x)/2$, and ${
m H}_{ec{m}}\equiv {
m H}_{ec{m}}(\omega)$ are harmonic polylogarithms

NNLO CFs

Numerical estimates: Imaginary part of the Compton form factor \mathcal{H} , t = -0.1 GeV²

GK-model, normalized at input scale $\mu^2=4~{\rm GeV}^2$ to HERAPDF20 (thin lines) and ABMP16 (thick) — the gluon contribution is large and negative, enhanced at NNLO

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook
New: DD	/CS				

• Why DDVCS?

$$V(\xi,\eta,Q^2) = \sum_{q} e_q^2 \int_{-1}^{1} \frac{dx}{\eta - x - i\epsilon} H_q(x,\xi,t) \qquad \frac{\xi}{\eta} = \frac{q_1^2 - q_2^2}{q_1^2 + q_2^2}$$

• Direct access to GPDs at $x \neq \xi$, e.g.,

$$q_2^2 = 2.5 \, {\rm GeV}^2: \qquad \begin{cases} q_1^2 = -0.3 \, {\rm GeV}^2 \rightarrow \frac{\xi}{\eta} = 1.27 \\ q_1^2 = -0.6 \, {\rm GeV}^2 \rightarrow \frac{\xi}{\eta} = 1.67 \end{cases}$$

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook
Conformal	symmetry in	QCD?			

QCD is not a conformal theory, but

$$\mathcal{A}_{\rm QCD} = \mathcal{A}_{\rm QCD}^{\rm conf} + O(\beta(\alpha_s))$$

"Conformal QCD": QCD in $d-2\epsilon$ at Wilson-Fischer critical point $\beta(\alpha_S)=0$

V.B., A. Manashov, Eur.Phys.J.C 73 (2013) 2544

Two-loop coefficient function in DDVCS

In conformal QCD

$$C_{\perp(L)}(\omega x,\omega) = \int dx' \left\{ \frac{\omega}{(1-\omega x)^{1(2)+\frac{1}{2}\gamma_N}} + (\omega \to -\omega) \right\} K_{\perp(L)}(x',x), \qquad \omega = \frac{\xi}{\eta}$$

where $K_i(x,x')$ are $\mathrm{SL}(2)$ -invariant operators that do not depend on ω

$$\int dx' K_i(x',x) P_{N-1}^{(\lambda_N)}(x') = K_i(N) P_{N-1}^{(\lambda_N)}(x) \,.$$

with the spectrum

$$\begin{split} K_{\perp}(N) &= \frac{\Gamma(N)\Gamma(1+\frac{1}{2}\gamma_N)}{\sigma_N\Gamma(N+\frac{1}{2}\gamma_N)} C_1^{DIS}(N,\frac{Q^2}{\mu^2},a_s,\epsilon_*) \\ K_L(N) &= \frac{\Gamma(N)\Gamma(2+\frac{1}{2}\gamma_N)}{\sigma_N\Gamma(N+1+\frac{1}{2}\gamma_N)} C_L^{DIS}(N,\frac{Q^2}{\mu^2},a_s,\epsilon_*) \end{split}$$

Two-loop coefficient function in DDVCS

NNLO CFs

 $\xi/\eta = 1.67$

 $\xi/\eta = 1.27$

LO: short dashes; NLO: long dashes; NNLO: solid curves

V.B., Hua-Yu Jiang, A.N. Manashov, A. von Manteuffel, paper in preparation

V. M. Braun (Regensburg)

Sudakov-type double logarithms in the CFs:

$$C_V(x/\xi, a_s) \sim \frac{1}{1-x/\xi} \left[1 + a_s C_F \ln^2 \left(1 - \frac{x}{\xi} \right) + \frac{1}{2} (a_s C_F)^2 \ln^4 \left(1 - \frac{x}{\xi} \right) + \dots \right]$$

Resummation to the NNLL accuracy

J. Schoenleber, JHEP 02 (2023), 207

$$C_V(x/\xi, a_s) \sim \frac{1}{1 - \frac{x}{\xi}} \exp\left\{\frac{1}{2} \int_{Q^2(1 - \frac{x}{\xi})}^{Q^2} \left[-\Gamma_{cusp}(\alpha_s(\mu)) \ln \frac{Q^2(1 - \frac{x}{\xi})}{\mu^2} + \gamma_f(\alpha_s(\mu))\right]\right\}$$
$$\times H(\alpha_s(Q)) F(\alpha_s(\sqrt{1 - \frac{x}{\xi}}Q))$$

 $\leftarrow \gamma_f$, H and F are known to $\mathcal{O}(\alpha_s^2)$

new: Threshold logarithms in DDVCS

(J. Schoenleber, paper in preparation)

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook
Evolution eq	uations for	GPDs			

• Two loops (NLO): singlet + nonsiglet

A. Belitsky, A. Freund, D. Müller, NPB 574, 347 (2000)

- checked by an independent calculation
- evolution code available but not general enough
- Three loops much more difficult:

Conformal symmetry:

- Make use of the NNLO results for anomalous dimensions
- One loop less compared to direct calculation

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook		
Evolution equations for CRDs							

Methods:

• Two-loop conformal anomaly

V.B., A.Manashov, S. Moch, M. Strohmaier, JHEP 03 (2016), 142

 \Rightarrow Three-loop evolution equations for flavor-nonsinglet light-ray operators

V.B., A.Manashov, S. Moch, M. Strohmaier, JHEP **06** (2017), 037 Y. Ji, A. Manashov, S. Moch, PRD **108** (2023) 054009

Orthogonality of conformal operators

- ⇒ Three-loop mixing matrices for flavor-singlet operators with N ≤ 8
 vector: V.B., K. Chetyrkin, A. Manashov, PLB 834 (2022) 137409
 axial-vector: V.B., K. Chetyrkin, A. Manashov, in progress
- Numerical impact expected to be moderate because of limited Q^2 range

- Ambiguity in the choice of collinear directions makes "leading-twist" calculations ambiguous. In addition, electromagnetic Ward identities are violated.
 - \bullet Repaired by power-suppressed corrections, $(\sqrt{-t}/Q)^k$ and $(m/Q)^k$
 - "Kinematic" do not involve new nonperturbative input apart from usual GPDs
 - Factorizable
- Twist-four completed V.B., A. Manashov, JHEP 01 (2012), 085 ← method V.B., A. Manashov, D. Müller, B. Pirnay, PRD 89 (2014) 074022
 - Large effects in certain regions of phase space
- Twist-six in progress
 V.B., Y. Ji, A. Manashov, JHEP 03 (2021), 051
 V.B., Y. Ji, A. Manashov, JHEP 01 (2023), 078
 new: V.B., Y. Ji, A. Manashov, in preparation
- ← scalar target ← nucleon

 \leftarrow method

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Out

Large kinematic corrections for the total cross section

M. Defurne et al. [Hall A Collaboration] arXiv:1504.05453

GPD model: KM10a (Kumericki, Mueller, Nucl. Phys. B 841 (2010)

ook

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook
Operator	Product Expar	nsion			

schematically

"kinematic" corrections that repair the frame dependence and Ward identities come from

- (1) corrections m/Q and $\sqrt{-t}/Q$ to the ME of twist-two operators (Nachtmann)
- (2) higher-twist operators that are obtained from twist-two by adding total derivatives

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook

Problem: matrix elements of some descendant operators over free quarks vanish

Ferrara, Grillo, Parisi, Gatto, '71-'73

$$\partial^{\mu}O_{\mu\nu} = 2i\bar{q}gF_{\nu\mu}\gamma^{\mu}q, \qquad \qquad O_{\mu\nu} = (1/2)[\bar{q}\gamma_{\mu}\overset{\leftrightarrow}{D}_{\nu}q + (\mu\leftrightarrow\nu)]$$

• Usual procedure to calculate the coefficient functions does not work

VB, A. Manashov, D. Müller, B. Pirnay '11-'14

Consider quark-gluon matrix elements

Example

Use hermiticity of evolution equations for twist-4 operators to separate "kinematic" terms

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outloo
New appro	ach: all twist	S			
-	·() ·()) \	$(A^{\mu_1\dots\mu_N} \otimes N)$	$D^{\mu_1\dots\mu_N}$	u n N	
1 { ;	$f(x)f(0) = \sum_{N}$	$ \{ A_N^{I} + A \\ \downarrow \\ twist-2 operative \} $	$A_N + B_N + B_N + M O'$	$\underbrace{\mathcal{O}_{\mu,\mu_1\ldots\mu_N}}_{\text{cendants of twist 2}}$	
	-	+ $C_N^{\mu_1\dots\mu_N} \underbrace{\partial^2 \mathcal{O}_{\mu_1\dots\mu_N}^N}$	$D_N^{\mu_1\dots\mu_N} \partial^{\mu_2\dots\mu_N}$	$\partial^{\nu} \mathcal{O}^{N}_{\mu,\nu,\mu_1\mu_N} + \dots \Big\} + \dots$	
		descendants		descendants	
	_ \	$\neg \alpha^{\mu_1 \dots \mu_N} $ $() \alpha^N$			

 $\equiv \sum_{N} C_{N}^{\mu_{1}...\mu_{N}}(x,\partial) \, \mathcal{O}_{\mu_{1}...\mu_{N}}^{N} + \text{ quark-gluon operators}$

S. Ferrara, A. F. Grillo and R. Gatto, 1971-1973:

"Conformally covariant OPE"

In conformal field theories, the CFs of descendants are related to the CFs of twist-2 operators by symmetry and do not need to be calculated directly

$$A_N^{\mu_1\dots\mu_N} \stackrel{O(4,2)}{\mapsto} C_N^{\mu_1\dots\mu_N}(x,\partial)$$

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook
Conformal to	riangles				

A.M. Polyakov, 1970:

$$\begin{split} \langle O_1(x_1) \, O_2(x_2) \rangle &= \frac{\mathrm{const}}{|x_1 - x_2|^{2\Delta_1}} \, \delta_{\Delta_1 \Delta_2} \\ \langle O_1(x_1) \, O_2(x_2) \, O_3(x_3) \rangle &= \frac{\mathrm{const}}{|x_1 - x_2|^{\Delta_1 + \Delta_2 - \Delta_3} |x_1 - x_3|^{\Delta_1 + \Delta_3 - \Delta_2} |x_2 - x_3|^{\Delta_3 + \Delta_2 - \Delta_1}} \end{split}$$

• $\leftarrow \Delta_k$ is a scaling dimension (canonical + anomalous)

• \leftarrow exact to all orders of perturbation theory

Motivation	NNLO CFs	Threshold logarithms	NNLO evolution	Kinematic power corrections	Outlook

• Done:

$$\begin{split} \mathcal{A}^{(\pm\pm)} &\sim 1 + \frac{1}{Q^2} + \frac{1}{Q^4} + \dots \qquad \qquad \checkmark \\ \mathcal{A}^{(\pm0)} &\sim \frac{1}{Q} + \frac{1}{Q^3} + \dots \qquad \qquad \checkmark \\ \mathcal{A}^{(\pm\mp)} &\sim \frac{1}{Q^2} + \frac{1}{Q^4} + \dots \qquad \qquad \checkmark \end{split}$$

- further terms can be calculated if necessary
- Observe:

- factorization valid at twist 6 (IR divergences cancel)

— target mass corrections absorbed in the dependence on $t_{min} = -\frac{\xi^2 m^2}{1-\varepsilon^2}$

Compare DIS, Nachtmann variable

$$\xi_N = \frac{2x_B}{1 + \sqrt{1 + \frac{4x_B^2 m^2}{Q^2}}} = x_B \left(1 - \frac{x_B^2 m^2}{Q^2} + \dots \right)$$

• On a nucleus $m \mapsto Am$, $x_B \mapsto x_B/A$, $\xi \mapsto \xi/A$, hence TMCs are the same \rightarrow factorization not in danger

NNLO evolution

Cross sections

Hall A, nucl-ex/0607029, vs. KM12

!!! Expansion parameter $1/Q^2 \rightarrow 1/(qq') = 2/(Q^2 + t)$

PRELIMINARY

- red solid twist 6
- orange dash-dotted twist 4
- green dashed BMP twist 2
- Is black dots KM twist 2

CLAS12 DVCS beam asymmetries, PRL. 130 (2023) 211902 (10.3 GeV)

CLAS12 DVCS beam asymmetries, PRL. 130 (2023) 211902 (10.6 GeV)

Twist-6

Twist-4

LTRMP

Cross sections (2)

Increasing t

PRELIMINARY

!!! Strong cancellations in

 $\mathcal{F}_{0+}^{DIS} = -(1+\varkappa)\mathcal{F}_{0+}^{phot} + \varkappa_0 \left[\mathcal{F}_{++}^{phot} + \mathcal{F}_{-+}^{phot} \right]$

Summary

Towards NNLO accuracy

- Two-loop coefficient functions for DVCS
 - sizeable corrections, completed for light quarks
 - new: DDVCS, flavor-nonsinglet only
- Three-loop evolution equations for GPDS
 - flavor-nonsiglet in position space, singlet for the first few moments
 - pressing issue: numerical implementation, also in NLO
- Threshold resummations at $x \to \xi$
 - completed to NNLL; new: DDVCS,

② Kinematic power corrections

- new: Twist-six accuracy, $(\sqrt{-t}/Q)^3$, $(m/Q)^3$
 - complete results available, numerical code (B.Pirnay + . . .)
 - good convergence if expansion organized in $1/(Q^2+t)$
 - large effects for parts of phase space and in collider kinematics
 - coherent DVCS from nuclei: Target mass corrections do not spoil factorization

Further issues

- establishing NLO accuracy (at minimum) as standard of the field
- GPDs from Compton form factors; Neural networks or ansätze?
- t-dependence of "genuine" higher-twist contributions; models

