

Next generation perturbative QCD 24 October 2024

Quarkonium: a magnifying glass on the gluon TMDs inside protons

Speaker: Luca Maxia University of Groningen - VSI

Recent review on Quarkonium at EIC: 2409.03691

Outline

(transverse momentum dependent parton distribution functions)

- Part I: J/ψ and TMD-PDFs
- Part II: Quarkonium mechanism
- Part III: Accessing gluon TMDs at the EIC
- Part IV: Accessing gluon TMDs at the LHC
- Part V: the TMDShF

... Maxia (University of Groningen - VSI)

The gluon TMDs table

(transverse momentum dependent PDFs)

... Maxia (University of Groningen - VSI)

Mulders, Rodriguez, PRD 63 (2001)

gluon polar.	Unpolarized	Circular	Linea
ton polar.			
olarized	f_1		h_1^\perp
gitudinal		g_{1L}	h_{1L}^{\perp}
Isverse	f_{1T}^{\perp}	g_{1T}	h_1 , h_1
also colli	near 🗾 T	-Even	T-Odd

Note that the TMD notation is analogous between quarks and gluons!

The gluon TMDs table

(transverse momentum dependent PDFs)

... Maxia (University of Groningen - VSI)

Mulders, Rodriguez, PRD 63 (2001)

gluon polar.	Unpolarized	Circular	Linea	
ton polar.				
olarized	f_1		h_1^{\perp}	
gitudinal		g_{1L}	h_{1L}^{\perp}	
Isverse	f_{1T}^{\perp}	g_{1T}	h_1 , h_1	
also collinear 🛛 T-Even 📁 T-Odd				

Note that even if protons are unpolarised gluons may be polarised!

The gluon TMDs positivity bounds

Upper bounds on gluon
distributions driven by
matrix **positivity** constraints
$$\begin{cases}
f_{1} + \frac{|p_{T}|}{M}e^{-i\phi}(g) \\
\frac{|p_{T}|}{M}e^{i\phi}(h) \\
2f_{1} \\
g_{1L}^{g}| \leq f_{1}^{g} \\
|f_{1T}^{\perp g}|, |g_{1T}^{g}|, |h_{1}^{g}| \leq \frac{M_{p}}{|p_{T}|},
\end{cases}$$
Description to bounds are useful to determine

Positivity bounds are useful to determine asymmetries upper limits

... Maxia (University of Groningen - VSI)

Matrix in the gluon; nucleon spin basis $h_{1L}^{\perp} - i \, h_1^{\perp}) \qquad rac{|p_T|^2}{M^2} e^{2i\phi} \, h_{1T}^{\perp} \qquad \qquad f_1 - g_{1L} \qquad \qquad -rac{|p_T|}{M} \, e^{i\phi} \left(g_{1T} - i \, f_{1T}^{\perp}
ight)$ $2\,h_1 \qquad -rac{|p_T|}{M}\,e^{i\phi}\left(h_{1L}^\perp + i\,h_1^\perp
ight) \ -rac{|p_T|}{M}\,e^{-i\phi}\left(g_{1T} + i\,f_{1T}^\perp
ight) \qquad f_1 + g_{1L}$ $-f_1^g \qquad \frac{1}{2}|h_1^{\perp g}| \le \frac{M_p^2}{n_z^2} f_1^g \qquad \frac{1}{2}|h_1^{\perp g}| \le \frac{M_p^3}{|n_z|^3} f_1^g$

The gluon TMDs positivity bounds

Upper bounds on gluon distributions driven by matrix **positivity** constraints $f_1^g \ge 0$ $|g_{1L}^{g}| \le f_{1}^{g} \qquad |f_{1T}^{\perp g}|, |g_{1T}^{g}|, |h_{1}^{g}| \le \frac{M_{p}}{|\boldsymbol{p}_{T}|} f_{1}^{g} \qquad \frac{1}{2} |h_{1}^{\perp g}| \le \frac{M_{p}^{2}}{\boldsymbol{p}_{2}^{2}} f_{1}^{g} \qquad \frac{1}{2} |h_{1T}^{\perp g}| \le \frac{M_{p}^{3}}{|\boldsymbol{p}_{T}|^{3}} f_{1}^{g}$ Positivity bounds are useful to determine asymmetries upper limits Also used for parameterization, e.g. via a Gaussian anstaz Gaussian with width $\langle p_T^2 \rangle$ Collinear PDF

$$f_1^g(x, \boldsymbol{p}_T^2) \propto G(\boldsymbol{p}_T^2, \langle p_T^2 \rangle) f_1^g(x)$$

Maxia (University of Groningen - VSI)

Matrix in the | gluon; nucleon > spin basis $f_1 + g_{1L} \qquad \quad rac{|p_T|}{M} \, e^{i\phi} \left(g_{1T} + i \, f_{1T}^\perp
ight) \quad \quad rac{|p_T|}{M} \, e^{-i\phi} \left(h_{1L}^\perp + i \, h_1^\perp
ight) \qquad \quad 2 \, h_1$ $\frac{|p_{T}|}{M} e^{-i\phi} \left(g_{1T} - i f_{1T}^{\perp}\right) \qquad \qquad f_{1} - g_{1L} \qquad \qquad \frac{|p_{T}|^{2}}{M^{2}} e^{-2i\phi} h_{1T}^{\perp} \qquad - \frac{|p_{T}|}{M} e^{-i\phi} \left(h_{1L}^{\perp} - i h_{1}^{\perp}\right)$ $rac{|p_T|}{M} e^{i\phi} \left(h_{1L}^\perp - i \, h_1^\perp
ight) \qquad rac{|p_T|^2}{M^2} e^{2i\phi} \, h_{1T}^\perp \qquad \qquad f_1 - g_{1L} \qquad \qquad -rac{|p_T|}{M} \, e^{i\phi} \left(g_{1T} - i \, f_{1T}^\perp
ight)$ $\begin{bmatrix} M & 0 & 1L & 1L & 1L \\ & 2h_1 & & -\frac{|p_T|}{M} e^{i\phi} \left(h_{1L}^{\perp} + i h_1^{\perp}\right) & -\frac{|p_T|}{M} e^{-i\phi} \left(g_{1T} + i f_{1T}^{\perp}\right) & f_1 + g_{1L} \end{bmatrix}$

 ρ modifies the broadening N modifies the x dep. $F_1^g(x, \boldsymbol{p}_T^2) \propto G(\boldsymbol{p}_T^2, \rho \langle p_T^2 \rangle) N(x) f_1^g(x)$

Quarkonia and gluon TMDs

Processes involving Quarkonia are sensitive to gluons

 $\bullet p + p \to \eta_O + X$

• $p + p \rightarrow J/\psi + J/\psi + X$

• $e + p \rightarrow$

• $e + p \rightarrow e' + J/\psi + \gamma + X$

Maxia (University of Groningen - VSI)

hadron collisions

• $p + p \rightarrow \chi_O + X$

• $p + p \rightarrow J/\psi + X$?

ep collisions

$$e' + J/\psi + X$$

• $e + p \rightarrow e' + J/\psi + jet + X$

and more...

J/w ID card

L (orbital a.m.) J (total a.m.) P (parity) C (charge conj.) S (spin) c (color)

.. Maxia (University of Groningen - VSI)

J/ψ formation mechanism

Quarkonia are characterised by:

Large mass M

Short-distance scale perturbative

... Maxia (University of Groningen - VSI)

Bodwin, Braaten, Lepage, PRD 51 (1994)

• small relative velocity v of the heavy-quark pair (QQ) for charmonium $v^2 \approx 0.3 c^2$

Long-distance scale non-perturbative

J/ψ formation mechanism

Quarkonia are characterised by:

Large mass M

• small relative velocity \mathbf{v} of the heavy-quark pair (QQ) for charmonium $v^2 \approx 0.3 c^2$

Short-distance scale perturbative

Expanded in power of $\alpha_{\rm s}$

Production of the heavy-quark pair $Q\bar{Q}$ in a Color-Singlet state

. Maxia (University of Groningen - VSI)

Bodwin, Braaten, Lepage, PRD 51 (1994)

Long-distance scale non-perturbative

(some) Frameworks:

Non-Relativistic QCD Colour-Singlet Model CSM NRQCD

QQ in a Color-Singlet

and -Octet states

expansion w.r.t. v

matrix elements (LDMEs)

Tests of the underlying J/ψ formation mechanism

Collection of observables (@ EIC) that probe the underlying mechanism

• J/ψ polarization parameters D'Alesio, LM, Murgia, Pisano, Sangem, PRD 107 (2023)

• Ratio Quarkonium/open-quark at small- P_T

Boer, Pisano, Taels, PRD 103 (2021)

• Azimuthal correlations in J/ψ plus jet production

LM, Yuan, 2403.02097 (2024)

... Maxia (University of Groningen - VSI)

Tests of the underlying J/ψ formation mechanism

• J/ψ polarization parameters

D'Alesio, LM, Murgia, Pisano, Sangem, PRD 107 (2023)

L. Maxia (University of Groningen - VSI)

J/v polarization parameters

Quarkonium polarization is historically tricky from theoretical pov

.. Maxia (University of Groningen - VSI)

Frame choice

_. Maxia (University of Groningen - VSI)

Polarization parameters are not frame independent

Different choices for the reference frame

- Gottfried-Jackson frame GJ
- Collins-Soper frame CS
- Helicity frame HX
- TF Target frame

Frames are related by a rotation around the Y-axis

J/ψ pol. parameters at high- P_T

... Maxia (University of Groningen - VSI)

10

J/ψ pol. parameters at high- P_T

.. Maxia (University of Groningen - VSI)

10

Tests of the underlying J/ψ formation mechanism

• Ratio Quarkonium/open-quark at small- P_T

Boer, Pisano, Taels, PRD 103 (2021)

L. Maxia (University of Groningen - VSI)

$J/\psi \log P_T$ production at the EIC

J/ψ electroproduction at small- P_T (and within NRQCD) probes CO LDME ratios

Bachetta, Boer, Pisano, Taels, EPJ C 80 (2020)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\scriptscriptstyle B}\,\mathrm{d}y\,\mathrm{d}^2\boldsymbol{P}_T} \equiv \mathrm{d}\sigma^U(\phi_T) + \mathrm{d}\sigma^T(\phi_T,\phi_S)$

$\phi_T \equiv \phi_h$ Quarkonium azimuth. angle w.r.t. lepton plane

 ϕ_{S} proton spin azimuth. angle w.r.t. lepton plane

... Maxia (University of Groningen - VSI)

$J/\psi \log P_T$ production at the EIC

J/ψ electroproduction at small- P_T (and within NRQCD) probes CO LDME ratios

Bachetta, Boer, Pisano, Taels, EPJ C 80 (2020)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\scriptscriptstyle B}\,\mathrm{d}y\,\mathrm{d}^2\boldsymbol{P}_T} \equiv \mathrm{d}\sigma^U(\phi_T) + \mathrm{d}\sigma^T(\phi_T,\phi_S)$

$$d\sigma^{U}(\phi_{T}) \propto A^{U} f_{1}^{g}(x, \boldsymbol{q}_{T}^{2}) + B^{U} \frac{\boldsymbol{q}_{T}^{2}}{M_{p}^{2}} h_{1}^{\perp g}(x, \boldsymbol{q}_{T}^{2})$$

$$A^{UQ_U} = \left[1 - (1 - y)^2\right] \left[\mathcal{O}_S^{(8)} + 4 \frac{7M_{\psi}^4 + 2M_{\psi}^2Q^2 + 3}{M_{\psi}^2(M_{\psi}^2 + Q^2)^2}\right]$$

$$B^{UQ_U} = (1 - y) \left[-\mathcal{O}_S^{(8)} + 4 \frac{3M_{\psi}^2 - Q^4}{M_{\psi}^2(M_{\psi}^2 + Q^2)} \mathcal{O}_P^{(8)} \right]$$

... Maxia (University of Groningen - VSI)

Accessing TMDs at the EIC

To single out the ratio of LDMEs we need to compare different final states Comparison of different quarkonium polarization states

- Quarkonium vs open heavy-quark production

$$D^{\mathcal{Q}_P} = \int \mathrm{d}\phi_T \, \frac{\mathrm{d}\sigma^{U\mathcal{Q}_P}}{\mathrm{d}x_B \, \mathrm{d}y \, \mathrm{d}^2 \boldsymbol{P}_T}$$

Boer, Pisano, Taels, PRD 103 (2021)

$$N^{Q_P} = \int \mathrm{d}\phi_T \,\cos(2\phi_T) \,\frac{\mathrm{d}\sigma^{UQ_P}}{\mathrm{d}x_B \,\mathrm{d}y \,\mathrm{d}^2 P_T}$$

Accessing TMDs at the EIC

To single out the ratio of LDMEs we need to compare different final states Comparison of different quarkonium polarization states

$$D^{\mathbb{Q}_P} = \int \mathrm{d}\phi_T \, \frac{\mathrm{d}\sigma^{U\mathbb{Q}_P}}{\mathrm{d}x_B \, \mathrm{d}y \, \mathrm{d}^2 P_T}$$

$$\frac{D^{J/\psi_L}}{D^{J/\psi_U}} = \frac{M_{\psi}^2 \left(q^2 + 1\right)^2 \mathcal{O}_S^{(8)} + 12 \left(q^4 + 2q^2 + 12\right) \mathcal{O}_P^{(8)}}{3 \left(M_{\psi}^2 \left(q^2 + 1\right)^2 \mathcal{O}_S^{(8)} + 4 \left(3q^4 + 2q^2 + 7\right)\right) \mathcal{O}_P^{(8)}}$$

Note that for $M_{\psi}^2 \mathcal{O}_S^{(8)} \gg \mathcal{O}_P^{(8)}$ ratio is constant

. Maxia (University of Groningen - VSI)

Boer, Pisano, Taels, PRD 103 (2021)

where

Accessing TMDs at the EIC

To single out the ratio of LDMEs we need to compare different final states

Quarkonium vs open heavy-quark production

$$D^{\mathcal{Q}_P} = \int \mathrm{d}\phi_T \, \frac{\mathrm{d}\sigma^{U\mathcal{Q}_P}}{\mathrm{d}x_B \, \mathrm{d}y \, \mathrm{d}^2 \boldsymbol{P}_T}$$

$$D^{Q\bar{Q}} = \int \mathrm{d}\phi_T \,\frac{\mathrm{d}\sigma^{Q\bar{Q}}}{\mathrm{d}x_B \,\mathrm{d}y \,\mathrm{d}z \,\mathrm{d}^2 K_T \,\mathrm{d}^2 P_T}$$

where $z = \frac{K_Q \cdot P}{R}$ is the outgoing quark en. fraction, $K_T = (K_{QT} - K_{\bar{Q}T})/2$ is the transv. difference $q \cdot P$

.. Maxia (University of Groningen - VSI)

Boer, Pisano, Taels, PRD 103 (2021)

$$N^{\mathbb{Q}_P} = \int \mathrm{d}\phi_T \cos(2\phi_T) \frac{\mathrm{d}\sigma^{U\mathbb{Q}_P}}{\mathrm{d}x_B \,\mathrm{d}y \,\mathrm{d}^2 P_T}$$

$$N^{Q\bar{Q}} = \int \mathrm{d}\phi_T \cos(2\phi_T) \frac{\mathrm{d}\sigma^{QQ}}{\mathrm{d}x_B \,\mathrm{d}y \,\mathrm{d}z \,\mathrm{d}^2 K_T \,\mathrm{d}^2 P_T}$$

Ratio Onia/open-quark

To avoid contributions from TMD evol. $K_T = Q (\equiv M_w)$, whereas z = 1/2

Butenschoen, Kniehl, PRL 106 (2011)

- <u>Chao, Ma, Shao, Wang, Zhang, PRL 108 (2012)</u> 2.
- Sharma, Vitev, PRC 87 (2013) J/ψ 3.
- Bodwin, Chung, Kim, Lee, PRL 113 (2014) 4.

.. Maxia (University of Groningen - VSI)

14

Tests of the underlying J/ψ formation mechanism

Next, I will present a collection of suggested observables at the **EIC**

• Azimuthal correlations in J/ψ plus jet production

LM, Yuan, 2403.02097 (2024)

_. Maxia (University of Groningen - VSI)

Quarkonium plus jet

.. Maxia (University of Groningen - VSI)

LM, Yuan, 2403.02097 (2024)

Correlation limit $(J/\psi \text{ and jet back-to-back})$

A diagramatic view of soft gluon emissions

We consider **photoproduction** Three possibilities to emit a soft gluon from the Born amplitude

_. Maxia (University of Groningen - VSI)

LM, Yuan, 2403.02097 (2024)

16

A diagramatic view of soft gluon emissions

We consider **photoproduction** Three possibilities to emit a soft gluon from the Born amplitude

... Maxia (University of Groningen - VSI)

LM, Yuan, 2403.02097 (2024)

Single and double logarithms: CS

$$\int \frac{\mathrm{d}^3 k_g}{(2\pi)^3 2E_{k_g}} \left| \overline{\mathscr{A}_1^{(1)}} \right|^2 \delta^{(2)}(q_\perp + k_{g\perp}) = \frac{1}{2}$$

$\ln \frac{s}{q_{\perp}^2}$: dominant behavior at low q_{\perp}

• $\ln \frac{\hat{t}}{\hat{u}}$: related to jet rapidity $y_j = \frac{1}{2} \ln \frac{k_j^+}{k_i^-}$

• $I_i(R, \phi)$: under investigation

L. Maxia (University of Groningen - VSI)

Single and double logarithms: CO

$$\int \frac{\mathrm{d}^{3} k_{g}}{(2\pi)^{3} 2E_{k_{g}}} \left| \overline{\mathscr{A}_{1}^{(8)}} \right|^{2} \delta^{(2)}(q_{\perp} + k_{g\perp}) = \frac{\alpha_{s} C_{A}}{2\pi^{2} q_{\perp}^{2}} \left| \overline{\mathscr{A}_{0}^{g,(8)}} \right|^{2}$$

• $\ln \frac{s}{a^2}$ and $I_j(R, \phi)$ do not vary from CS case

• $\frac{1}{2} \ln \frac{1 - M_{\psi}^2/\hat{u}}{1 - M_{\psi}^2/\hat{t}}$: related to jet and J/ψ rapidities

• $I_{\psi}(m_{\psi\perp}, \phi), I_{\psi-j}(m_{\psi\perp}, \Delta y, \phi), I_{\psi}^{\text{jet}}(R, m_{\psi\perp}, \Delta y, \phi)$ under study L. Maxia (University of Groninger 1/0)

LM, Yuan, 2403.02097 (2024)

from removal of jet rapidity region

Azimuthal asymmetries: CS vs CO

 $\langle \cos(\phi) \rangle$

The azimuthal distributions can be expanded in a Fourier series

... Maxia (University of Groningen - VSI)

LM, Yuan, 2403.02097 (2024)

 ∞ $I(R, m_{\psi\perp}) = 2 \sum C_n^{(1,8)}(R, m_{\psi\perp}, \Delta y = 0) \cos(n\phi)$ $|\vec{k}_{j\perp}| = 12 \text{ GeV}$ *n*=0

The azimuthal distributions can be expanded in a Fourier series

... Maxia (University of Groningen - VSI)

0.4

0.8

0.6

 $m_{\psi\perp}$

1.0

0.2

Accessing gluon TMDs at the EIC

Proposed phenomenological studies to probe gluon TMDs at the EIC (mostly asymmetries)

• Azimuthal asymmetries in J/ψ inclusive production Bacchetta, Boer, Pisano, Taels, EPJ C 80 (2020)

Bor, Boer, PRD 106 (2022)

• Azimuthal asymmetries in J/ψ plus jet production

D'Alesio, Murgia, Pisano, Taels, PRD 100 (2019)

... Maxia (University of Groningen - VSI)

Accessing gluon TMDs at the EIC

Proposed phenomenological studies to probe gluon TMDs at the EIC (mostly asymmetries)

• Azimuthal asymmetries in J/ψ inclusive production Bacchetta, Boer, Pisano, Taels, EPJ C 80 (2020)

Bor, Boer, PRD 106 (2022)

_. Maxia (University of Groningen - VSI)

J/ψ inclusive production

Bacchetta, Boer, Pisano, Taels, EPJ C 80 (2020)

 $d\sigma(\phi_T, \phi_S) \equiv d\sigma$

unpolarized $d\sigma^{U}(\phi_{T}) \propto A^{U} f_{1}^{g}(x, q_{T}^{2}) + B^{U} \frac{q_{T}^{2}}{M_{p}^{2}} h_{1}^{\perp g}(x, q_{T}^{2}) \cos(2\phi_{T})$

$$d\sigma^{T}(\phi_{T}) \propto \frac{|\boldsymbol{q}_{T}|}{M_{p}} \begin{bmatrix} A^{T} f_{1T}^{\perp g}(x, \boldsymbol{q}_{T}^{2}) \sin(\phi_{S} - \phi_{T}) + B^{T} \begin{pmatrix} h_{1}^{g}(x, \boldsymbol{q}_{T}^{2}) \sin(\phi_{S} + \phi_{T}) - \frac{\boldsymbol{q}_{T}^{2}}{2M_{p}^{2}} h_{1T}^{\perp g}(x, \boldsymbol{q}_{T}^{2}) \sin(\phi_{S} - 3\phi_{T}) \\ \text{Sivers} & \text{linearly polarized} \end{bmatrix}$$

!!Leading-twist requires the color-octet mechanism!!

Maxia (University of Groningen - VSI)

$$\sigma^U(\phi_T) + \mathrm{d}\sigma^T(\phi_T, \phi_S)$$

linearly polarized

where $A^U = A^T$ and $B^U = B^T$

Asymmetries in J/ψ inclusive production

Bacchetta, Boer, Pisano, Taels, EPJ C 80 (2020)

$$A^{W} = 2 \frac{\int d\phi_{T} d\phi_{S} W(\phi_{T}, \phi_{S}) d\sigma(\phi_{T}, \phi_{S})}{\int d\phi_{T} d\phi_{S} d\sigma(\phi_{T}, \phi_{S})}$$

Some asymmetries ratios are direct probes of TMDs ratios:

$$A^{\sin(\phi_{S}-\phi_{T})} = \frac{|\boldsymbol{q}_{T}|}{M_{p}} \frac{f_{1T}^{\perp g}}{f_{1}^{g}} \qquad \qquad \frac{A^{\cos(2\phi_{T})}}{A^{\sin(\phi_{S}+\phi_{T})}} = \frac{|\boldsymbol{q}_{T}|}{M_{p}} \frac{h_{1}^{\perp g}}{h_{1}^{g}} \qquad \qquad \frac{A^{\sin(\phi_{S}-3\phi_{T})}}{A^{\sin(\phi_{S}+\phi_{T})}} = -\frac{\boldsymbol{q}_{T}^{2}}{2M_{p}^{2}} \frac{h_{1T}^{\perp g}}{h_{1}^{g}}$$

Positivity bounds lead to asymmetries upper limits

 $A^{\sin(\phi_S - \phi_T)} \leq 1$

L. Maxia (University of Groningen - VSI)

Four azimuthal moments:

$$A^{\cos(2\phi_T)} \propto \frac{q_T^2}{2M_p^2} \frac{h_1^{\perp g}}{f_1^g} \qquad A^{\sin(\phi_S - \phi_T)} = \frac{|q_T|}{M_p} \frac{f_1^{\perp}}{f_1^g}$$
$$A^{\sin(\phi_S + \phi_T)} \propto \frac{|q_T|}{M_p} \frac{h_1^g}{f_1^g} \qquad A^{\sin(\phi_S - 3\phi_T)} \propto \frac{|q_T|^3}{2M_p^3} \frac{h_1^g}{f_1^g}$$

 $A^{\cos(2\phi_T)}, A^{\sin(\phi_S + \phi_T)}, A^{\sin(\phi_S - 3\phi_T)} \leq A_N^W$

Numerical results

TMD evolution of $\langle \cos 2\phi \rangle$ asymmetry

TMD evolution may play an active role at the EIC

$$\langle \cos(2\phi_T) \rangle = \frac{1}{2} A^{\cos(2\phi_T)} \propto \frac{\mathscr{C}[w h_{1T}^{\perp g} \Delta_h^{[n]}]}{\mathscr{C}[f_1^g \Delta^{[n]}]}$$

The convolution are evaluated within the b_T -space (Fourier conjugate of q_T)

$$\mathscr{C}[f_1^g \Delta] = \int_0^\infty \frac{\mathrm{d}b_T}{2\pi} b_T J_0(b_T q_T) \,\mathrm{e}^{-S_A(b_T, Q^2)} \hat{f}_1^g(x)$$

$$\mathscr{C}[h_{1T}^{\perp g} \Delta_h] = -\int_0^\infty \frac{\mathrm{d}b_T}{2\pi} b_T J_2(b_T q_T) \,\mathrm{e}^{-S_A(b_T, Q^2)}$$

.. Maxia (University of Groningen - VSI)

$[h]_{h}$ defined as R

$$\Delta^{[n]}, \Delta^{[n]}_h \propto \langle \mathcal{O}_{\psi}[n] \rangle$$
(Term induced by the final state)

 $(x, b_T) \hat{\Delta}(b_T)$ Sudakov S_A resums large logs

 $\hat{h}_{1T}^{\perp g}(x, b_T) \hat{\Delta}_h(b_T)$ 11

The Sudakov in J/ψ electroproduction

$$S_A(b_T, Q^2) = -\frac{6}{\beta_0} \left[\log \frac{Q^2}{\mu_b^2} + \log \frac{\log(Q^2/\Lambda_{\text{QCD}}^2)}{\log(\mu_b^2/\Lambda_{\text{QCD}}^2)} \left(\frac{\beta_0}{6} + \frac{B_{\text{CO}}}{6} - \log \frac{Q^2}{\Lambda_{\text{QCD}}^2} \right) \right]$$

$$\beta_0 = \frac{23}{3}$$

Term induced by the final state
Determined from $pp \to J/\psi X$

To improve convergence the Sudakov b_T dependence has to be modified

$$\mu_{b} = \frac{b_{0}}{b_{T}} \rightarrow \mu_{b*}' = \frac{b_{0}}{\sqrt{b_{*}^{2} + (b_{0}/Q)^{2}}} \quad \text{where} \quad b_{*} = \frac{b_{T}}{\sqrt{1 + (b_{T}/b_{\text{max}})^{2}}}$$
$$e^{-S_{A}(Q^{2},\mu_{b})} \rightarrow e^{-S_{A}(Q^{2},\mu_{b*}')} e^{-S_{\text{NP}}(b_{T},Q^{2})} \implies S_{\text{NP}} = \left[A \log \frac{Q}{Q_{\text{NP}}} + B(x)\right] b_{T}^{2}$$

$$\mu_{b} = \frac{b_{0}}{b_{T}} \rightarrow \mu_{b*}' = \frac{b_{0}}{\sqrt{b_{*}^{2} + (b_{0}/Q)^{2}}} \quad \text{where} \quad b_{*} = \frac{b_{T}}{\sqrt{1 + (b_{T}/b_{\max})^{2}}}$$
$$e^{-S_{A}(Q^{2},\mu_{b})} \rightarrow e^{-S_{A}(Q^{2},\mu_{b*}')} e^{-S_{NP}(b_{T},Q^{2})} \implies S_{NP} = \left[A \log \frac{Q}{Q_{NP}} + B(x)\right] b_{T}^{2}$$

L. Maxia (University of Groningen - VSI)

Bor, Boer, PRD 106 (2022)

ΓΓ <u>Sun, Yuan, Yuan, PRD 88 (2013)</u>

Numerical results (with TMD evolution)

Magnitude and *Q* dependence vary with LDME choice

Asymmetries increase monotonically with q_T

CMSWZ: Chao, Ma, Shao, Wang, Zhang, PRL 108 (2012)

.. Maxia (University of Groningen - VSI)

Bor, Boer, PRD 106 (2022)

Bands driven by nonpertubative Sudakov

SV: <u>Sharma, Vitev, PRC 87 (2013)</u> - J/ψ

Accessing gluon TMDs at the EIC

Proposed phenomenological studies to probe gluon TMDs at the EIC (mostly asymmetries)

• Azimuthal asymmetries in J/ψ plus jet production

D'Alesio, Murgia, Pisano, Taels, PRD 100 (2019)

_. Maxia (University of Groningen - VSI)

Asymmetries in J/ψ plus jet

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z\,\mathrm{d}x_{B}\,\mathrm{d}y\,\mathrm{d}^{2}\boldsymbol{q}_{T}\,\mathrm{d}^{2}\boldsymbol{K}_{\perp}} \equiv \mathrm{d}\sigma(\phi_{T},\phi_{\perp},\phi_{S})$$
$$= \mathrm{d}\sigma^{U}(\phi_{T},\phi_{\perp}) + \mathrm{d}\sigma^{T}(\phi_{T},\phi_{S})$$

$$d\sigma^{U} \propto \left(A_{0}^{eg} + A_{1}^{eg} \cos \phi_{\perp} + A_{2}^{eg} \cos 2\phi_{\perp}\right) f_{1}^{g} + \left(B_{0}^{eg} \cos 2\phi_{T} + B_{1}^{eg} \cos(2\phi_{T} - \phi_{\perp}) + B_{2}^{eg} \cos 2(\phi_{T} + B_{3}^{eg} \cos(2\phi_{T} - 3\phi_{\perp}) + B_{4}^{eg} \cos(2\phi_{T} - 4\phi_{\perp})\right) \frac{q_{T}^{2}}{M_{p}^{2}} h_{1}^{2}$$

$$d\sigma^{T} \propto \sin(\phi_{S} - \phi_{T}) \left(A_{0}^{eg} + A_{1}^{eg} \cos \phi_{\perp} + A_{2}^{eg} \cos 2\phi_{\perp} \right) \frac{|q_{T}|}{M_{p}} \\ + \cos(\phi_{S} - \phi_{T}) \left(B_{0}^{eg} \sin 2\phi_{T} + B_{1}^{eg} \sin(2\phi_{T} - \phi_{\perp}) + B_{2}^{eg} \sin 2\phi_{\perp} + \left(B_{0}^{eg} \sin(\phi_{S} + \phi_{T}) + B_{1}^{eg} \sin(\phi_{S} + \phi_{T} - \phi_{\perp}) + B_{2}^{eg} \sin(\phi_{S} + \phi_{\perp}) \right) \right)$$

... Maxia (University of Groningen - VSI)

 $\perp g$

Asymmetries in J/ψ plus jet

_. Maxia (University of Groningen - VSI)

Numerical results - I

CMSWZ: Chao, Ma, Shao, Wang, Zhang, PRL 108 (2012)

.. Maxia (University of Groningen - VSI)

SV: <u>Sharma, Vitev, PRC 87 (2013)</u> - J/ψ

Accessing gluon TMDs at the LHC

Proposed phenomenological studies to probe gluon TMDs at the LHC

• Double J/ψ production

Lansberg, Pisano, Scarpa, Schlegel, PLB 784 (2018) Scarpa, Boer, Echevarría, Lansberg, Pisano, EPJ C 80 (2020) Bor, Colpani-Serri, Lansberg, in preparation

Azimuthal asymmetries in C-even quarkonia productions

Kato, LM, Pisano, 2403.20017 (2024)

Inclusive single J/ψ production in pp collisions may be accompanied with factorization-breaking effects Nonetheless, one can use phenomenological, TMD-based approaches such as GPM and CGI-GPM D'Alesio, LM, Murgia, Pisano, Rajesh, PRD 102 (2020)

.. Maxia (University of Groningen - VSI)

Accessing gluon TMDs at the LHC

• Double J/ψ production

Lansberg, Pisano, Scarpa, Schlegel, *PLB 784* (2018) Scarpa, Boer, Echevarría, Lansberg, Pisano, *EPJ C 80* (2020) Bor, Colpani-Serri, Lansberg, *in preparation*

L. Maxia (University of Groningen - VSI)

Asymmetries in double- J/ψ production

Double J/ψ production is dominated by the CS mechanism

absence of color-octet final states that can lead to breaking effects

Associated to the double- J/ψ system

.. Maxia (University of Groningen - VSI)

- Two asymmetries generated by the angular distribution of the J/ψ - J/ψ system

 - Distribution measured in the **Collins-Soper** frame

Asymmetries in double- J/ψ production

Double J/ψ production is dominated by the CS mechanism

absence of color-octet final states that can lead to breaking effects

 $\frac{\mathrm{d}\sigma}{\mathrm{d}M_{QQ}\,\mathrm{d}Y_{QQ}\,\mathrm{d}^{2}\boldsymbol{P}_{QQT}\,\mathrm{d}\Omega} \propto 1 + \langle\cos 2\phi_{\mathrm{CS}}\rangle + \langle\cos 4\phi_{\mathrm{CS}}\rangle$ $\langle \cos 2\phi_{\rm CS} \rangle = \frac{1}{2} \frac{F_3 \mathscr{C}[w_3 f_1^g h_1^{\perp g}] + F_3 \mathscr{C}[w_3 h_1^{\perp g} f_1^g]}{F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{\perp g} h_1^{\perp g}]} \longrightarrow \frac{F_i(\theta_{\rm CS}, M_{QQ})}{hard-scattering}$ $\langle \cos 2\phi_{\rm CS} \rangle = \frac{1}{2} \frac{F_4 \mathscr{C}[w_4 h_1^{\perp g} h_1^{\perp g}]}{F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{\perp g} h_1^{\perp g}]}$

Maxia (University of Groningen - VSI)

- Two asymmetries generated by the angular distribution of the J/ψ - J/ψ system

$${}^{g}h_{1}^{\perp g}]$$

Double J/ψ anno 2018

Band are constructed combining "positivitybound" and "gaussianlike" predictions

_. Maxia (University of Groningen - VSI)

Lansberg, Pisano, Scarpa, Schlegel, PLB 784 (2018)

.. Maxia (University of Groningen - VSI)

Double J/ψ anno 2024

Cross-section data are not well reproduced by predictions employing TMD evolution Hints to modify the non-perturbative component of the Sudakov $A = 0.16 \text{ GeV}^2$ (Work in progress) 0.6

.. Maxia (University of Groningen - VSI)

Accessing gluon TMDs at the LHC

Azimuthal asymmetries in C-even quarkonia productions

Kato, LM, Pisano, 2403.20017 (2024)

L. Maxia (University of Groningen - VSI)

Other Quarkonia states at the LHC

Inclusive C = + quarkonia are also (effectively) described by the CSM η_{Q} $({}^{1}S_{0})$ $\chi_{02} ({}^3P_2)$ $\chi_{00} \left({}^{3}P_{0} \right)$

At LHC we can have unpolarized and transversely polarized protons

$$\frac{\mathrm{d}\sigma[\mathcal{Q}]}{\mathrm{d}y\,\mathrm{d}^2\boldsymbol{q}_T} = F_{UU}^{\mathcal{Q}} + F_{UT}^{\mathcal{Q}}|\boldsymbol{S}_{BT}|\sin\boldsymbol{q}$$
We an

... Maxia (University of Groningen - VSI)

 $\phi_{S_B} + F_{UL}^{Q} S_{BL}$ Excluded by parity conservation

re considering solely the polarization of the target proton

Convolutions for C-even quarkonia

 $F_{IIII}^{\chi_{Q2}} \propto \mathscr{C} \left[f_1^g f_1^g \right]$

 $F_{IIII}^{\chi_{Q2}} \propto \mathscr{C} \left[f_1^g f_{1T}^{\perp g} \right]$

 $F_{UU}^{\eta_0} \propto \mathscr{C}$

L. Maxia (University of Groningen - VSI)

Kato, LM, Pisano, 2403.20017 (2024)

Combining different C = + states, we can single out different convolutions

$$F_{UU}^{\chi_{Q0}} \propto \mathscr{C}\left[f_1^g f_1^g\right] + \mathscr{C}\left[w_{UU} h_1^{\perp g} h_1^{\perp g}\right]$$

$$F_{UU}^{\eta_0} \propto \mathscr{C}\left[f_1^g f_1^g\right] - \mathscr{C}\left[w_{UU} h_1^{\perp g} h_1^{\perp g}\right]$$

$$F_{UU}^{\chi_{Q0}} \propto \mathscr{C}\left[f_1^g f_{1T}^{\perp g}\right] + \mathscr{C}\left[w_{UT}^h h_1^{\perp g} h_1^g\right] - \mathscr{C}\left[w_{UT}^{h^{\perp}} h_1^{\perp g} h_1^g\right]$$
$$F_{UU}^{\eta_0} \propto \mathscr{C}\left[f_1^g f_{1T}^{\perp g}\right] - \mathscr{C}\left[w_{UT}^h h_1^{\perp g} h_1^g\right] + \mathscr{C}\left[w_{UT}^{h^{\perp}} h_1^{\perp g} h_1^g\right]$$

Numerical results within a Gaussian model - I

Gluon TMDs parameterization: $f_1^g(x, \boldsymbol{p}_T^2) = G(\boldsymbol{p}_T^2, \langle p_T^2 \rangle) f_1^g(x)$ $F_1^g(x, \boldsymbol{p}_T^2) \propto G(\boldsymbol{p}_T^2, \rho \langle p_T^2 \rangle) N(x) f_1^g(x)$ $N = +1 \qquad \rho = 1/3$

 $\langle p_T^2 \rangle$ determines magnitude and broadening of the distribution

The double-node feature of the convolution is observed in the comparison

L. Maxia (University of Groningen - VSI)

Numerical results within a Gaussian model - II

Gluon TMDs parameterization: $f_1^g(x, \boldsymbol{p}_T^2) = G(\boldsymbol{p}_T^2, \langle p_T^2 \rangle) f_1^g(x)$ $F_1^g(x, \boldsymbol{p}_T^2) \propto G(\boldsymbol{p}_T^2, \rho \langle p_T^2 \rangle) N(x) f_1^g(x)$

 $\langle p_T^2 \rangle$ determines broadening of the distribution

The presence of oscillations around χ_{c2} is a signature of the Sivers and linearly polarized gluons

... Maxia (University of Groningen - VSI)

Kato, LM, Pisano, 2403.20017 (2024)

The TMD shape function

Previous studies presented do not include transverse momentum effect from quarkonium formation

$\Delta_{\mathcal{O}}^{[n]}(z, \boldsymbol{k}_T^2) = \sum C_{nn'}(z, \boldsymbol{k}_T^2) \otimes \langle \mathcal{O}_{\mathcal{Q}}[n'] \rangle$ n'

.. Maxia (University of Groningen - VSI)

(properly) (prod. in *pp* collisions) Echevarría, JHEP 144 (2019)

- Fleming, Makris, Mehen, JHEP 112 (2020)
 - (decays to light quarks)

The TMD shape function

effect from quarkonium formation

n

... Maxia (University of Groningen - VSI)

(properly) Previous studies presented do not include transverse momentum (prod. in *pp* collisions) $\Delta_{\mathcal{O}}^{[n]}(z, \boldsymbol{k}_T^2) = \sum C_{nn'}(z, \boldsymbol{k}_T^2) \otimes \langle \mathcal{O}_{\mathcal{Q}}[n'] \rangle$ Echevarría, JHEP 144 (2019) Fleming, Makris, Mehen, JHEP 112 (2020)

(decays to light guarks)

Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023) $\left| \mathrm{d}\phi_T \,\mathrm{d}\sigma^U(\phi_T) \right|_{\mathrm{TMD}} \neq \left| \mathrm{d}\phi_T \,\mathrm{d}\sigma^U(\phi_T) \right|_{\mathrm{coll.}}$ Mismatch solved by employing

$$\Delta_{\psi}^{[n]}(z, \boldsymbol{k}_{T}^{2}; \mu^{2}) = -\frac{\alpha_{s}}{2\pi^{2}\boldsymbol{k}_{T}^{2}}C_{A}\left(1 + \log\frac{M_{\psi}^{2}\mu^{2}}{(M_{\psi}^{2} + Q^{2})^{2}}\right)\left\langle\mathcal{O}_{\psi}[n]\right\rangle$$

The TMD shape function process dependence The perturbative tail presents a process-induced dependence on Q $\Delta_{\psi}^{[n]}(z, \boldsymbol{k}_{T}^{2}; \mu^{2}) = -\frac{\alpha_{s}}{2\pi^{2}\boldsymbol{k}_{T}^{2}}C_{A}\left(1 + \log\frac{M_{\psi}^{2}\mu^{2}}{(M_{w}^{2} + Q^{2})^{2}}\right)\left\langle\mathcal{O}_{\psi}[n]\right\rangle\delta(1 - z)$ Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

Consequence:

The TMDShF depends on a process-induced quantity (photon virtuality Q) unrelated to neither a specific hard scale or rapidity regulator choice, as it usually happens for other TMDs!

This suggests to split up this quantity

... Maxia (University of Groningen - VSI)

$$\Delta_{ep}^{[n]} = \Delta_{\psi}^{[n]} \times S_{ep}$$
Process
Universal

The TMD shape function process dependence

The perturbative tail presents a process-induced dependence on Q $\Delta_{\psi}^{[n]}(z, \boldsymbol{k}_{T}^{2}; \mu^{2}) = -\frac{\alpha_{s}}{2\pi^{2}\boldsymbol{k}_{T}^{2}}C_{A}\left(1 + \log\frac{M_{\psi}^{2}\mu^{2}}{(M_{\psi}^{2} + Q^{2})^{2}}\right)\left\langle\mathcal{O}_{\psi}[n]\right\rangle\delta(1 - z)$ Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

Phenomenological test of the separation:

Maxia (University of Groningen - VSI)

 $\Delta_{ep}^{[n]} = \Delta_{\psi}^{[n]} \times S_{ep}$ Process
-nonder dependent

Easier extraction of $\Delta_{\mathcal{W}}^{[n]}(M_{\mathcal{W}})$

 $\Delta_{\psi}^{[n]}(M_{\psi})$ can be evolved to other scales

Tested at other scales, e.g. in Υ production

Summary of the talk

- Gluon TMDs are still vastly unkown objects
- Quarkonia (and particular J/ψ) allow to access gluon TMDs at low Q
- importance of the color-octet mechanism in J/ψ formation
- Proposal of observables at both EIC and LHC to probe gluon TMDs
- To properly describe quarkonium observable at low q_{τ} we need to adopt the correct factorization
 - **TMD** shape function

See also: Echevarria, Romera, Taels, JHEP 09 (2024)

... Maxia (University of Groningen - VSI)

Several observables have been proposed to discriminate and understand the

.. Maxia (University of Groningen - VSI)

Accessing gluon TMDs through Quarkonium observables

Back-up slides

TMD progress in the quark sector

Sivers effect

Bacchetta et al., JHEP 81 (2017)

MAP collab, JHEP 127 (2022)

Maxia (University of Groningen - VSI)

Unpolarized

Global fits of unpolarized TMDs combining Drell-Yan (DY) and semi-inclusive deep-inelastic scattering (SIDIS) data

J/ψ polarization within NRQCD

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{B}\,\mathrm{d}y\,\mathrm{d}^{4}P_{\psi}\,\mathrm{d}\Omega} \propto 1 + \lambda\cos^{2}\theta + \mu\cos2\theta\cos\phi + \frac{\nu}{2}\sin^{2}\theta\cos2\phi$$

Angular parameters are connected to helicity amplitudes $\mathcal{W}_{\Lambda\Lambda'}$

Parameterization is in accordance to model-independent arguments! Hermeticity Parity **Gauge Invariance**

Within **NRQCD** helicity amplitudes involve interferences among waves!

$$\mathcal{W}_{\Lambda\Lambda'} = \mathcal{W}_{\Lambda\Lambda'} \begin{bmatrix} 3S_1^{(1)} \end{bmatrix} + \mathcal{W}_{\Lambda\Lambda'} \begin{bmatrix} 1S_0^{(8)} \end{bmatrix} + \mathcal{W}_{\Lambda\Lambda'} \begin{bmatrix} 3S_1^{(8)} \end{bmatrix} + \mathcal{W}_{\Lambda\Lambda'} \begin{bmatrix} \{S = 1, L = 1\}^{(8)} \end{bmatrix}$$

. Maxia (University of Groningen - VSI)

- with $\Lambda = -1, 0, +1$

D'Alesio, LM, Murgia, Pisano, Sangem, JHEP 03 (2022)

Benele, Krämer, Vänttinen, PRD 57 (1998)

J/ψ invariants at high- P_T

 $1 + \lambda + \nu$

 $3 + \lambda$

Combinations of λ , μ , and ν can provide frame-invariant quantities

e.g. $\mathcal{F} =$

... Maxia (University of Groningen - VSI)

 J/ψ polarization at low P_T

At low transverse momentum all frames coincide

. Maxia (University of Groningen - VSI)

D'Alesio, LM, Murgia, Pisano, Sangem, JHEP 03 (2022)

Soft gluon radiation: CS

: from the inter

The extra dof has to be integrated out, leading to

L. Maxia (University of Groningen - VSI)

ference
$$|\mathcal{A}_{1}^{(1)}|^{2} = g_{s}^{2}C_{A}S_{g}(p_{2},k_{j})|\mathcal{A}_{q}^{(1)}|^{2}$$

$$\frac{q_s C_A}{\pi^2 q_\perp^2} |\overline{\mathscr{A}_0^{(1)}}|^2 \left[\ln \frac{\hat{s}}{q_\perp^2} + \ln \frac{\hat{t}}{\hat{u}} + I_j(R,\phi) \right]$$

$$(\Delta_{k_g k_j} > R^2) \quad \Longrightarrow \quad$$

Excludes the jet rapidity region

Soft gluon radiation: CO quark

... Maxia (University of Groningen - VSI)

Soft gluon radiation: LDME evolution

The

$$\begin{aligned} \bar{c}\bar{c}[n'] & A_{1f}^{(3P_{j}^{(8)})} = (i\,g_{s}\,f_{dd'k}) \frac{k_{\psi}\cdot \hat{e}_{\lambda_{g}}}{k_{\psi}\cdot k_{g}} A_{0}^{(3P_{j}^{(8)})} \\ & A_{1d}^{(3P_{j}^{(8)})} = \left(-4\sqrt{3}i\,g_{s}\,\frac{R_{1}'}{R_{0}}\right) \frac{\hat{e}_{L_{z}}\cdot \hat{e}_{\lambda_{g}}}{k_{\psi}\cdot k_{g}} \left(\sqrt{\frac{2}{N}}\,\delta_{dk}\,A_{0}^{(3S_{1}^{(1)})} + d_{dd'k}\,A_{0}^{(3S_{1}^{(8)})}\right) \\ & \text{e two contributions never mix because of } k_{\psi}\cdot \hat{e}_{\psi} = 0 \\ & \int |\overline{A_{1d}^{a,(3P_{j}^{(8)})}}|^{2}\,dk_{g} \sim \frac{\alpha_{s}}{2\pi^{2}|\vec{q}_{\perp}|^{2}}\frac{96}{M_{\psi}^{2}} \left(\frac{|\overline{A_{0}^{a,(3S_{1}^{(1)})}}|^{2}}{\langle\mathcal{O}_{1}(^{3}S_{1})\rangle} + B_{F}\,\frac{|\overline{A_{0}^{a,(3S_{1}^{(8)})}}|^{2}}{\langle\mathcal{O}_{8}(^{3}S_{1})\rangle}\right) \left\langle \mathcal{O}_{8}(^{3}P_{0})\right\rangle \frac{I_{\psi}\cdot\psi}{2} \end{aligned}$$

1

.. Maxia (University of Groningen - VSI)

Contribution of the evolution from $S \rightarrow P$ waves

agreement with: Butenschoen, Knieh, Nucl. Phys. B 950 (2020)

Motivations to split up the TMDShF

$$\tilde{\Delta}_{ep}^{[n]}(z, b_T; Q, \mu_H) = \frac{1}{2\pi} \left[1 + \frac{\alpha_s}{2\pi} C_A \left(1 + \log \frac{M_{\psi}^2 \mu_H^2}{(M_{\psi}^2 + Q^2)^2} \right) \log \frac{\mu_H^2}{\mu_b^2} \right] \langle \mathcal{O}[n] \rangle \, \delta(1 - z)$$

Reasons to split-up this term:

1. A purely quarkonium quantity should depend on $M_{\prime\prime\prime}$ solely

2. In open-quark production the soft-factor may produce azimuthal dependeces

Catani, Grazzini, Torre, Nucl. Phys. B 890 (2014)

Figure taken from Ferrera's talk @ Heavy-Quark Hadroproduction from Collider to Astroparticle Physics (2019)

.. Maxia (University of Groningen - VSI)

Boer, Bor, LM, Pisano Yuan, JHEP 08 (2023)

