Double parton scattering: a theory overview

M. Diehl

Deutsches Elektronen-Synchrotron DESY

MITP program "Next Generation Perturbative QCD for Hadron Structure" 21 October 2024

HELMHOLTZ

Plan:

- \triangleright what is double parton scattering?
- \blacktriangleright main theory results and status
- ▶ only a glimpse at experiment unfortunately no time for phenomenology, modelling, lattice studies, nuclei

For more information see e.g.

- ▶ most recent workshop on MPI@LHC: <https://indico.cern.ch/event/1281679>
- ▶ Multiple parton interactions at the LHC eds. P Bartalini and J R Gaunt, Dec. 2018 individual chapters available on arXiv

Hadron-hadron collisions

▶ standard description based on factorisation formulae

cross sect $=$ parton distributions \times parton-level cross sect

[Introduction](#page-1-0) [Theory level 1](#page-4-0) [Experiment](#page-9-0) [Theory level 2](#page-11-0) [What is DPS?](#page-18-0) [Evolution again](#page-22-0) [Summary](#page-28-0) [Backup](#page-29-0)

▶ factorisation formulae are for inclusive cross sections $pp \rightarrow A + X$ where $A =$ produced by parton-level scattering, specified in detail $X =$ summed over, no questions asked

Hadron-hadron collisions

▶ standard description based on factorisation formulae

cross sect $=$ parton distributions \times parton-level cross sect

[Introduction](#page-1-0) [Theory level 1](#page-4-0) [Experiment](#page-9-0) [Theory level 2](#page-11-0) [What is DPS?](#page-18-0) [Evolution again](#page-22-0) [Summary](#page-28-0) [Backup](#page-29-0)

- ▶ factorisation formulae are for inclusive cross sections $pp \rightarrow A + X$ where $A =$ produced by parton-level scattering, specified in detail $X =$ summed over, no questions asked
- \blacktriangleright spectator interactions
	- cancel in inclusive cross sections thanks to unitarity
	- can be soft \rightsquigarrow part of underlying event (UE)
	- or hard \rightsquigarrow multiple hard scattering

 $▶$ double parton scattering $pp \rightarrow A_1 + A_2 + X$ with scales $Q_1, Q_2 \gg \Lambda$

- have factorisation formula with double parton distributions
- if $Q_1 \gg Q_2 \gg \Lambda$ \rightarrow part of underlying event for $pp \rightarrow A_1 + X$

Single vs. double hard scattering

 \blacktriangleright example: two gauge bosons with transverse momenta \bm{q}_1 and \bm{q}_2

single scattering (SPS)

 $|\bm{q}_1|$ and $|\bm{q}_2| \sim$ hard scale Q $|\bm{q}_1 + \bm{q}_2| \ll Q$

double scattering (DPS) both $|\bm{q}_1|$ and $|\bm{q}_2|\ll Q$

▶ for transverse momenta $\sim \Lambda \ll Q$:

$$
\frac{d\sigma_{\text{SPS}}}{d^2\bm{q}_1\,d^2\bm{q}_2}\sim \frac{d\sigma_{\text{DPS}}}{d^2\bm{q}_1\,d^2\bm{q}_2}\sim \frac{1}{Q^4\Lambda^2}
$$

but SPS populates larger phase space :

$$
\sigma_{\text{SPS}} \sim \frac{1}{Q^2} \,\,\gg\,\, \sigma_{\text{DPS}} \sim \frac{\Lambda^2}{Q^4}
$$

Single vs. double hard scattering

 \blacktriangleright example: two gauge bosons with transverse momenta \bm{q}_1 and \bm{q}_2

single scattering (SPS)

 $|\bm{q}_1|$ and $|\bm{q}_2| \sim$ hard scale Q

 $|\bm{q}_1 + \bm{q}_2| \ll Q$

double scattering (DPS) both $|\bm{q}_1|$ and $|\bm{q}_2|\ll Q$

▶ DPS can be enhanced by

- small parton mom. fractions x because of parton luminosity $\sigma_\mathsf{SPS}\sim\mathsf{PDF}^2$ and (roughly) $\sigma_\mathsf{DPS}\sim\mathsf{PDF}^4$
- large rapidity separation ΔY between systems A_1 and A_2 large invariant mass of overall system \rightsquigarrow large x in SPS
- coupling constants, etc.

A flagship DPS process: same-sign W pairs

[Introduction](#page-1-0) **[Theory level 1](#page-4-0)** [Experiment](#page-9-0) [Theory level 2](#page-11-0) [What is DPS?](#page-18-0) [Evolution again](#page-22-0) [Summary](#page-28-0) [Backup](#page-29-0)

 $\sigma_\mathsf{SPS} \propto \mathcal{O}(\alpha_s^2)$ with ≥ 2 jets $\sigma_\mathsf{DPS} \propto \mathcal{O}(\alpha_s^2)$

with leptonic W decays \rightsquigarrow same-sign lepton pairs and missing E_T

is also a search channel for new physics e.g. SUSY, top partners

\blacktriangleright several theory studies

Kulesza, Stirling 1999; Gaunt et al 2003; Ceccopieri, Rinaldi, Scopetta 2017; Cotogno, Kasemets, Myska 2018, 2020; Cabouat, Gaunt, Ostronlenk 2019

includes veto $N_{\text{jets}} < 2$

CMS, arXiv:1909.06265

DPS cross section: basic theory

$$
\frac{d\sigma_{\rm DPS}^{A_1 A_2}}{dx_1 dx_1 dx_2 dx_2} = \frac{1}{1 + \delta_{A_1 A_2}} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \mathbf{y} \, F_{a_1 a_2}(x_1, x_2, \mathbf{y}) \, F_{b_1 b_2}(\bar{x}_1, \bar{x}_2, \mathbf{y})
$$

 $\hat{\sigma}_i(x_i, \bar{x}_i)$ = parton-level cross section for $a_i + b_i \rightarrow A_i$ $F_{a_1 a_2}(x_1, x_2, \boldsymbol{y}) =$ double parton distribution (DPD) $y =$ transverse distance between partons

- **•** if compute $\hat{\sigma}_i$ at higher orders in α_s \rightsquigarrow convolution integrals over x_i for $\hat{\sigma}_i$ and F, as in SPS
- ▶ tree-level formula from Feynman graphs and kinematic approximations Paver, Treleani 1982, 1984; Mekhfi 1985, ..., MD, Ostermeier, Schäfer 2011
- ▶ all-order factorisation proof for double Drell-Yan Manohar, Waalewijn 2012; Vladimirov 2016, 2017; MD, Buffing, Gaunt, Kasemets, Nagar, Ostermeier, Plößl, Schäfer, Schönwald 2011–2018 requires modification of above formula (more later)

DPS cross section: basic theory

$$
\frac{d\sigma_{\rm DPS}^{A_1A_2}}{dx_1 dx_1 dx_2 dx_2} = \frac{1}{1 + \delta_{A_1A_2}} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \mathbf{y} \, F_{a_1a_2}(x_1, x_2, \mathbf{y}) \, F_{b_1b_2}(\bar{x}_1, \bar{x}_2, \mathbf{y})
$$

if assume $F_{a_1a_2}(x_1,x_2,\boldsymbol{y})=f_{a_1}(x_1)\,f_{a_2}(x_2)\,G(\boldsymbol{y})\;\Rightarrow\;$ pocket formula

$$
\frac{d\sigma_{\rm DPS}^{A_1 A_2}}{dx_1 dx_1 dx_2 dx_2} = \frac{\sigma_{\rm eff}^{-1}}{1 + \delta_{A_1 A_2}} \frac{d\sigma_{\rm SPS}^{A_1}}{dx_1 dx_1} \frac{d\sigma_{\rm SPS}^{A_2}}{dx_2 dx_2} \quad \text{with} \quad \sigma_{\rm eff}^{-1} = \int d^2 y \ G(y)^2
$$

- \blacktriangleright straightforward generalisation to N independent scatters underlies DPS and UE implementations in PYTHIA, Herwig, Sherpa with adjustments for conserving momentum and quark number
- \blacktriangleright underlies bulk of phenomenological estimates exceptions e.g. Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003-04; Blok et al 2013
- **•** fails when the assumption on $F_{a_1a_2}$ is invalid or when cross sect. formula misses important contributions (more later)

Experimental investigations (incomplete)

a compilation of σ_{eff} **values** see also similar overview in PoS DIS2019 (2019) 258

 \triangleright plus other studies not giving a σ_{eff} value

cannot capture the physics of DPS in just one number σ_{eff}

Experimental investigations (incomplete)

- Extraction of σ_{eff} can have significant theory uncertainties
- \blacktriangleright example: 4 jets, CMS, arXiv:2109.13822 different values for 13 GeV differ by adopted theory description of SPS

[Introduction](#page-1-0) [Theory level 1](#page-4-0) Ex**periment** [Theory level 2](#page-11-0) [What is DPS?](#page-18-0) [Evolution again](#page-22-0) [Summary](#page-28-0) [Backup](#page-29-0)

Scale dependence

▶ PDFs and DPDs are matrix elements of twist-two operators $\mathcal{O}_a(\boldsymbol{y}, \mu)$

 $f_a(x;\mu) \sim \langle p| \mathcal{O}_a(\mathbf{0};\mu)|p\rangle$ $F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2) \sim \langle p | \mathcal{O}_{a_1}(0; \mu_1) \mathcal{O}_{a_2}(y; \mu_2) | p \rangle$ $\mathcal{O}_q(\boldsymbol{z};\mu) \, \sim \, \bar{q}(\boldsymbol{z},\ldots) \gamma^{+} \hspace{0.5pt} q(\boldsymbol{z},\ldots)$ $\mathcal{O}_g(\boldsymbol{z};\mu) \, \sim \, F^{+i}(\boldsymbol{z},\ldots) \, F^{+i}(\boldsymbol{z},\ldots)$ renormalised at scale μ

Scale dependence

• PDFs and DPDs are matrix elements of twist-two operators $\mathcal{O}_a(\boldsymbol{\eta}, \mu)$

 $f_a(x; \mu) \sim \langle p | \mathcal{O}_a(\mathbf{0}; \mu) | p \rangle$ $F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2) \sim \langle p | \mathcal{O}_{a_1}(0; \mu_1) \mathcal{O}_{a_2}(y; \mu_2) | p \rangle$

 \Rightarrow separate DGLAP evolution for partons 1 and 2:

$$
\frac{\partial}{\partial \log \mu_i^2} F(x_1, x_2, \mathbf{y}; \mu_1, \mu_2) = P \underset{x_i}{\otimes} F \qquad \text{for } i = 1, 2
$$

 $P =$ same splitting functions as for usual PDFs

- ▶ factorisation scales μ_1, μ_2 can be different
- ▶ numerical implementation challenging many variables, many parton combinations (a_1, a_2)
	- different codes used in Gaunt, Stirling 2010 and later work and in Elias, Golec-Biernat, Stasto 2017
	- ongoing work on public evolution code CHILIPDF MD, Nagar, Plößl, Tackmann 2023
	- first implementation of a parton shower for DPS: Cabouat, Gaunt, Ostrolenk 2019; Cabouat, Gaunt 2020

Parton correlations

$$
\frac{d\sigma_{\text{DPS}}}{dx_1 dx_1 dx_2 dx_2} = \frac{\hat{\sigma}_1 \hat{\sigma}_2}{1 + \delta_{A_1 A_2}} \int d^2 y \ F(x_1, x_2, y) \ F(\bar{x}_1, \bar{x}_2, y)
$$

- between x_1 and x_2 note that $x_1 + x_2 \leq 1$
	- expect $F(x_1, x_2, y) \rightarrow 0$ for $x_1 + x_2 \rightarrow 1$
	- valence region: large correlations found in constituent quark model Rinaldi, Scopetta, Vento 2013

\blacktriangleright between x_i and y

for single partons see correlation between x and impact parameter \bm{b}

- diffraction: HERA results on $\gamma p \to J/\Psi p$ give $\langle \mathbf{b}^2 \rangle \propto \text{const} + 4\alpha' \log(1/x)$ with $4\alpha' \approx (0.16 \text{ fm})^2$ for gluons with $x \sim 10^{-3}$
- $\bullet \,$ lattice simulations \to strong decrease of $\langle \bm{b}^2 \rangle$ with x above ~ 0.1 plausible to expect similar correlations in double parton distributions impact on DPS: Frankfurt, Strikman, Weiss 2003, Corke, Sjöstrand 2011, Blok, Gunnellini 2015

Parton correlations: spin

$$
\frac{d\sigma_{\text{DPS}}}{dx_1 dx_1 dx_2 dx_2} = \frac{\hat{\sigma}_1 \hat{\sigma}_2}{1 + \delta_{A_1 A_2}} \int d^2 y \, F(x_1, x_2, y) \, F(\bar{x}_1, \bar{x}_2, y)
$$

- polarisations of two partons can be correlated even in unpolarised proton
	- quarks: longitudinal and transverse pol.
	- gluons: longitudinal and linear pol.
- \triangleright can be included in factorisation formula \rightsquigarrow extra terms with polarised DPDs and partonic cross sections
- parton spin correlations can affect final state distributions in DPS gauge boson pairs: Manohar, Waalewijn 2011; Kasemets, MD 2012 double charm: Echevarria, Kasemets, Mulders, Pisano arXiv:1501.07291
- large correlations seen in MIT bag model Chang, Manohar, Waalewijn 2012 most correlations found small in lattice study Bali et al 2021 for low x_1, x_2 size of correlations unknown
- \triangleright evolution to high scales tends to wash out spin correlations unpol. densities evolve faster than polarised ones MD, Kasemets 2014

Parton correlations: colour

$$
\frac{d\sigma_{\text{DPS}}}{dx_1\,dx_1\,dx_2\,d\bar{x}_2} = \frac{\hat{\sigma}_1\,\hat{\sigma}_2}{1 + \delta_{A_1A_2}} \int d^2\mathbf{y}\, F(x_1, x_2, \mathbf{y})\,F(\bar{x}_1, \bar{x}_2, \mathbf{y})
$$

- ▶ colour of two quarks and gluons can be correlated
- \triangleright can again be included in factorisation formula \rightsquigarrow extra terms with colour-dependent DPDs and partonic cross sections
- ▶ colour correlated DPDs evolve differently than ordinary PDFs
	- evolution to higher scales \rightsquigarrow Sudakov logarithms \rightsquigarrow suppression
- \triangleright colour correlated DPDs depend on rapidity parameter ζ
	- physically: $\log \sqrt{\zeta} \leftrightarrow$ rapidity separation when including soft gluons in one or the other DPD
	- same construction as for TMDs

Mekhfi 1988; Manohar, Waalewijn 2012 Diehl, Fabry, Vladimirov 2022; Diehl, Fabry, Plößl 2023

Colour structure of DPDs

 \blacktriangleright project colour of partons on $SU(N_c)$ representations

• singlet: $P_1^{jj',kk'} = \delta^{jj'} \delta^{kk'}/N_c$ as in usual PDFs

$$
\bullet\hspace{2mm} \text{octet: } P_8^{jj',kk'} = 2\hspace{0.5mm} t_a^{jj'} t_a^{kk'}
$$

• for gluons: $8^A, 8^S, 10, \overline{10}, 27$

ightharpoontring notation: $R_1 R_2 F_{a_1 a_2}$ for parton a_i in colour representation R_i

▶ DGLAP evolution in μ_1 and μ_2

- kernels depend on R equal to PDF kernels for $R = 1$
- does not mix ${}^{R_1R_2}F_{a_1a_2}$ with different dimensions $\dim(R_i)$
- flavour mixing:

$$
\xrightarrow{SR_2} F_{g a_2} \longleftrightarrow \xrightarrow{8R_2} F_{q a_2} + \xrightarrow{8R_2} F_{\bar{q} a_2}
$$

$$
\xrightarrow{AR_2} F_{g a_2} \longleftrightarrow \xrightarrow{8R_2} F_{q a_2} - \xrightarrow{8R_2} F_{\bar{q} a_2}
$$

Colour structure of DPDs

 \blacktriangleright project colour of partons on $SU(N_c)$ representations

- singlet: $P_1^{jj',kk'} = \delta^{jj'} \delta^{kk'}/N_c$ as in usual PDFs
- octet: $P_8^{jj',kk'} = 2t_a^{jj'}t_a^{kk'}$
- for gluons: $8^A, 8^S, 10, \overline{10}, 27$
- ightharpoontring notation: $R_1 R_2 F_{a_1 a_2}$ for parton a_i in colour representation R_i
- \triangleright Collins-Soper evolution in ζ
	- same form as for TMDs
	- evolution kernel depends on transverse distance
	- (kernel for $R = 8$ DPDs) = (kernel for gluon TMDs)

[Introduction](#page-1-0) [Theory level 1](#page-4-0) [Experiment](#page-9-0) [Theory level 2](#page-11-0) [What is DPS?](#page-18-0) [Evolution again](#page-22-0) [Summary](#page-28-0) [Backup](#page-29-0)

Behaviour at small interparton distance

▶ for $y \ll 1/\Lambda$ in perturbative region: $F(x_1, x_2, y)$ is dominated by graphs with splitting of single parton

gives strong correlations in x_1, x_2 , spin and colour between two partons e.g. -100% correlation for longitudinal pol. of q and \bar{q}

▶ can compute short-distance behaviour:

$$
F(x_1,x_2,\boldsymbol{y})\sim \frac{1}{\boldsymbol{y}^2}\text{ splitting } \text{fct} \otimes \text{usual } \textsf{PDF}
$$

calculated at NLO: MD, J Gaunt, P Plößl 2019, 2021 finite quark mass effects: MD, R Nagar, P Plößl 2022

Problems with the splitting graphs

▶ splitting contribution to DPS cross section ⇒ UV divergent integrals

$$
\textstyle\int d^2\bm{y}\,F(x_1,x_2,\bm{y})\,F(\bar x_1,\bar x_2,\bm{y})\sim\int d\bm{y}^2/\bm{y}^4
$$

in fact, formula is not valid for $|y| \sim 1/Q$

▶ double counting between DPS with splitting and SPS at higher loops MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012 already noted by Cacciari, Salam, Sapeta 2009

Problems with the splitting graphs

▶ splitting contribution to DPS cross section ⇒ UV divergent integrals

$$
\int d^2\boldsymbol{y}\, F(x_1,x_2,\boldsymbol{y})\, F(\bar x_1,\bar x_2,\boldsymbol{y}) \sim \int d\boldsymbol{y}^2/\boldsymbol{y}^4
$$

in fact, formula is not valid for $|y| \sim 1/Q$

 \blacktriangleright also have graphs with splitting in only one proton

$$
\sim \int d\mathbf{y}^2 / \mathbf{y}^2 \times F_{\text{no split}}(x_1, x_2, \mathbf{y})
$$

B Blok et al 2011-13
J Gaunt 2012
B Blok, P Gunnellini 2015

- ▶ how to delineate DPS from SPS is a matter of definition/scheme choice
- ▶ intuitively: small $|y| \sim 1/Q$ is SPS, large $|y| \gg 1/Q$ is DPS
- ▶ scheme worked out in MD, Gaunt, Schönwald 2017
	- σ _{SPS} defined as usual \Rightarrow no new calculation needed
	- define σ_{DPS} with cutoff $|y| > 1/\nu$ in factorisation formula separation scale ν , similar to factorisation scale μ
	- full cross section:

 $\sigma = \sigma_{\text{SPS}} + \sigma_{\text{DPS}}(\nu) - \sigma_{\text{sub}}(\nu)$

• double counting removed by σ_{sub}

 $= \sigma_{\text{DPS}}$ with F computed for small y in perturb. theory

 ν dependence cancels between σ_{DPS} and σ_{sub}

up to higher-order terms beyond accuracy of the calculation

▶ other proposed treatments: Blok, Dokshitzer, Frankfurt, Strikman 2012, 2013; Ryskin, Snigirev 2011, 2012; Manohar, Waalewijn 2012

Parton splitting and evolution

DPD splitting and DGLAP evolution for partons 1 and 2:

$$
F^{\mathsf{spl}}(x_i, \mathbf{y}; \mu, \mu) = \frac{1}{y^2} \text{ splitting Kernel} \times f(x_1 + x_2; \mu)
$$

$$
\frac{d}{d \log \mu_i^2} F(x_i, \mathbf{y}; \mu_i) = P \otimes_{x_i} F
$$

▶ natural scale to evaluate DPD splitting formula: $\mu_1 = \mu_2 \sim 1/y$

 \triangleright DGLAP equations resum logarithms / ladder graphs

- from scales Λ to $1/y$ in PDFs
- from scales $1/y$ to Q_1 or Q_2 in DPDs

SPS region: $y \sim 1/Q_i$, DGLAP logarithms only in PDFs

colour singlet DPDs:

 $\bullet\,$ evolution tends to flatten $1/y^2$ behaviour of F^{spl} $→$ can enhance DPS region $y \gg 1/Q_i$ in cross section

Parton splitting and evolution

DPD splitting and DGLAP evolution for partons 1 and 2:

$$
F^{\rm spl}(x_i, y; \mu, \mu) = \frac{1}{y^2} \text{ splitting Kernel} \times f(x_1 + x_2; \mu)
$$

$$
\frac{d}{d \log \mu_i^2} F(x_i, y; \mu_i) = P \otimes_{x_i} F
$$

▶ natural scale to evaluate DPD splitting formula: $\mu_1 = \mu_2 \sim 1/y$

 \triangleright DGLAP equations resum logarithms / ladder graphs

- from scales Λ to $1/y$ in PDFs
- from scales $1/y$ to Q_1 or Q_2 in DPDs

SPS region: $y \sim 1/Q_i$, DGLAP logarithms only in PDFs

- ▶ colour non-singlet DPDs:
	- Sudakov suppression from evolution avoided for y not too far away from $1/Q_i$

Numerical study MD, F Fabry, P Plößl arXiv:2310.16432

- plot DPDs for $\mu_1 = \mu_2$ and $\zeta = \mu_1 \mu_2/(x_1 x_2)$
- initial scale μ_{y^*} is $\sim 1/y$ at small y, saturates at large y

Numerical study MD, F Fabry, P Plößl arXiv:2310.16432

 \bullet at μ_{y^*} use model Ansatz for F^intr and for F^spl at large y

• bands: range of models for Collins-Soper kernel

Numerical study MD, F Fabry, P Plößl arXiv:2310.16432

- large y : increasingly strong suppression of colour non-singlets
- small y: little evolution from μ_{y^*} to final $\mu_i \rightsquigarrow$ no suppression

NLO effects MD, P Plößl, in preparation

colour singlet DPDs at $x_{1,2} = 0.01$, evolved from μ_{v^*} to $\mu_{1,2} = 80 \,\text{GeV}$

figure keys:

(order of DPD splitting, order of DGLAP evolution for PDFs and DPDs)

Summary

- \blacktriangleright have a detailed theory for double parton scattering largely on a par with single parton scattering
- ▶ growing number of NLO calculations available and can directly use many N^k LO results for SPS

▶ sensitive to parton structure in ways that cannot easily probe otherwise:

- transverses distance between two partons
- parton-parton correlations
- ▶ depending on the process, splitting $1 \rightarrow 2$ partons can play essential role \rightsquigarrow close interplay between DPS and loop corrections to SPS

Backup slides

More experimental investigations

LHC studies:

 \blacktriangleright run 1

Subtraction formalism at work

 $\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} + \sigma_{\text{SPS}}$

► for
$$
y \sim 1/Q
$$
 have $\sigma_{\text{DPS}} \approx \sigma_{\text{sub}}$
because pert. computation of *F* gives good approx. at considered order
 $\Rightarrow \sigma \approx \sigma_{\text{SPPS}}$

 ν dependence cancels between σ_{DPS} and σ_{sub} up to higher order terms

\n- for
$$
y \gg 1/Q
$$
 have $\sigma_{\text{sub}} \approx \sigma_{\text{SPS}}$ because DPS approximations work well in box graph
\n- $\Rightarrow \sigma \approx \sigma_{\text{DPS}}$
\n

- Same argument for 2v1 term and $\sigma_{\text{tw2} \times \text{tw4}}$ (were neglected above)
- ▶ subtraction formalism works order by order in perturb. theory J Collins, Foundations of Perturbative QCD, Chapt. 10

Evolution of colour dependent DPDs

▶ Collins-Soper equation:

$$
\frac{d}{d\ln\sqrt{\zeta}} R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$

=
$$
R_1 J(y; \mu_1, \mu_2) R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta).
$$

[Introduction](#page-1-0) [Theory level 1](#page-4-0) [Experiment](#page-9-0) [Theory level 2](#page-11-0) [What is DPS?](#page-18-0) [Evolution again](#page-22-0) [Summary](#page-28-0) B<mark>ackup</mark>

with RGE
$$
\frac{d}{d \ln \mu_1} R J(y; \mu_1, \mu_2) = - R \gamma_J(\mu_1)
$$

- Collins-Soper kernel $=$ derivative of soft factor w.r.t. rapidity
- for colour singlet: $^{1}J=0$ \rightsquigarrow no ζ dependence
- same form for TMDs

$$
R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta) \to f_a(x, b; \mu, \zeta)
$$

$$
R_J(y; \mu_1, \mu_2) \to K_a(b; \mu)
$$

$$
R_{\gamma}(\mu) \to \gamma_{K,a}(\mu)
$$

remarkably ${}^{8}J(b;\mu,\mu)=K_g(b;\mu)$ A Vladimirov 2018

• can be solved analytically

[Introduction](#page-1-0) [Theory level 1](#page-4-0) [Experiment](#page-9-0) [Theory level 2](#page-11-0) [What is DPS?](#page-18-0) [Evolution again](#page-22-0) [Summary](#page-28-0) B<mark>ackup</mark>

Evolution of colour dependent DPDs

▶ DGLAP equations:

$$
\frac{d}{d\ln\mu_1} R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$
\n
$$
= - R_1 \gamma_J(\mu_1) \ln\left(\frac{x_1 \sqrt{\zeta}}{\mu_1}\right) R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$
\n
$$
+ 2 \sum_{b_1, R'_1} \int_{x_1}^1 \frac{dz}{z} R_1 \overline{R'_1} P_{a_1 b_1}\left(\frac{x_1}{z}; \mu_1\right) R'_1 R_2 F_{b_1 a_2}(z, x_2, y; \mu_1, \mu_2, \zeta)
$$

likewise for μ_2 dependence

• kernels $^{RR'}P$ known at NLO

F Fabry, MD, A Vladimirov 2022

• similar form for TMDs:

$$
\frac{d}{d\ln\mu_1} f_a(x, b; \mu, \zeta)
$$

= $-\gamma_{K,a}(\mu) \ln\left(\frac{x\sqrt{\zeta}}{\mu}\right) f_a(x, b; \mu, \zeta)$
+ $\gamma_a(\mu) f_a(x; \mu, \zeta)$

Evolution of colour dependent DPDs

▶ DGLAP equations:

$$
\frac{d}{d\ln\mu_1} R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$
\n
$$
= - R_1 \gamma_J(\mu_1) \ln\left(\frac{x_1 \sqrt{\zeta}}{\mu_1}\right) R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$
\n
$$
+ 2 \sum_{b_1, R'_1} \int_{x_1}^1 \frac{dz}{z} R_1 \overline{R}'_1 P_{a_1 b_1}\left(\frac{x_1}{z}; \mu_1\right) R'_1 R_2 F_{b_1 a_2}(z, x_2, y; \mu_1, \mu_2, \zeta)
$$

likewise for μ_2 dependence

- kernels $^{RR'}P$ known at NLO F Fabry, MD, A Vladimirov 2022
- γ_J term \rightsquigarrow Sudakov logarithms