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Jiangmen Underground Neutrino Observatory
(JUNO)

● Liquid scintillation detector using 20 kton of linear alkyl benzene 
(LAB)

● 17,612 20’’ PMTs and 25,600 3’’ PMTs observing
 the liquid scintillator volume

● 1600 PMTs are used for the water
 Cherenkov detector

● Shielded by ~1800m.w.e. of
rock overburden

● Currently under construction,
 data taking starts Jan 2025
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Neutrino Physics with JUNO

● Reactor neutrinos
-> Neutrino mass ordering
-> Oscillation parameters

● Solar neutrinos

● Atmospheric neutrinos

● Geoneutrinos

● Supernova burst neutrinos

● Diffuse Supernova Neutrino 
Background

(examples)
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DSNB Detection/Exclusion: Current Status

-> The detection of DSNB or the exclusion of various supernova models 
is possible within the lifetime of JUNO and HyperK!

(-> See talk by Jie Cheng on Monday)
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For scintillation experiments, the inverse beta decay is the 
most suitable detection channel in the DSNB energy ROI:
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For scintillation experiments, the inverse beta decay is the 
most suitable detection channel in the DSNB energy ROI:

p+
+ν̄e→e

+
+n0

● Positron: Carries most of the kinetic energy,
 Capture within a few ns
 E

vis
 ≈ E

ν
 - 0.8 MeV

● Neutron: low kinetic energy,
 Capture with a lifetime of ~220 μs

– Capture on H: 2.2 MeV
– Capture on C12: 4.9 MeV
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Irreducible background is caused by ν
e
 from other sources 

reaching into the same energy range

[Julia Sawatzki, 2020]

37.7 evts / 100 kt yr
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Irreducible background is caused by ν
e
 from other sources 

reaching into the same energy range

[Julia Sawatzki, 2020]

22.6 evts / 100 kt yr
in energy ROI

37.7 evts / 100 kt yr
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Irreducible background is caused by ν
e
 from other sources 

reaching into the same energy range

[Julia Sawatzki, 2020]
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NC interactions of all-flavour atmospheric neutrinos can 
create an event signature similar to an IBD event

[Julia Sawatzki, 2020]
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NC interactions of all-flavour atmospheric neutrinos can 
create an event signature similar to an IBD event

No or multiple neutrons produced
[Julia Sawatzki, 2020]
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Fast Neutron Events

Spallation

Atmospheric muon

Neutrons
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The Motivation behind PSD

Difference in fluorescence between neutrons, NC events, and IBD:

– IBD: Prompt scintillation caused by positron

– NC events and fast neutrons: no positron produced, most 
energy deposited by neutrons or protons

Difference in energy loss rate
=> Difference in fluorescence spectra
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We expect a difference between gamma-like and neutron-like 
fluorescence as already measured at MLL (Garching), Legnaro (ITA)

[Raphael Stock, Hans Steiger, Neutrino 2020]

Neutron kinetic energies in measurements so far 
range from 1 to 11 MeV. -> Higher energies 
available in beamtimes in 2024/2025.
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We expect a difference between gamma-like and neutron-like 
fluorescence as already measured at MLL (Garching), Legnaro (ITA)

[Raphael Stock, Hans Steiger, Neutrino 2020]

Neutron kinetic energies in measurements so far 
range from 1 to 11 MeV. -> Higher energies 
available in beamtimes in 2024/2025.

Applies to IBD positrons 
Applies to protons / recoil protons 
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The expected pulseshape difference survives the full detector 
simulation -> We will use it for PSD

Detector Geometry

PMT Electronics
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Resulting pulseshapes from the full detector simulation
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Resulting pulseshapes from the full detector simulation

Traditonal cut variable for PSD: Fraction of PE after a certain time t
TTR

-> ‘Tail-to-Total ratio’ (TTR)
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First (old) PSD Method: Tail-to-Total Ratio

Cut variable for PSD: Fraction of PE after certain time t
TTR

-> ‘Tail-to-Total ratio’ (TTR)

TTR=
nPE (t TTR<t<1000 ns)

nPE (t<1000ns)

=> First variable for non-ML discrimination between IBD events 
(signal) and atmospheric NC events (background)
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TTR vs. R
evt

AtmNC:
analogous shape, 
but more diffuse

above 15.3m, light from the 
event position can undergo
total reflection => more 
delayed light

linear up to
R

evt
 = 16m
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Contour Cut in this 2D parameter space

For each spherical shell, determine the TTR value, below which are 95% of signal 
events => contour function of variable resolution in R

evt
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Using Machine Learning Methods for DSNB PSD

[stats.stackexchange.com]

Generic Example of an SVM:
High Signal Likelihood

High Background 
Likelihood

● ML implementations used here:
Feed-Forward Neural Networks (NN)
Boosted Decision Trees (BDT)
Support Vector Machines (SVM)

● Input given to the classifier about each event:

● Total and prompt event energy

● Event vertex radius

● Ten 100ns-timebins

● Each classifier then gives an ‘IBD likelihood’ 
as output.
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Feed-forward Neural Networks

● Implementation used: Sequential model from 
Keras as provided by the TensorFlow package.

● Multiple input variables describing an event, 
‘IBD likelihood’ as an output, variable number of 
hidden layers in between

● Neural Networks can provide great 
discrimination performance with the right 
parameters, but offer low transparency
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Boosted Decision Trees

[http://www.r2d3.us/visual-intro-to-machine-learning-part-1/]

-> BDT: „Performance-weighted sum of trees“ -> Better training performance
 and continuous output from 0 to 1



  
25

Boosted Decision Trees

-> BDT: „Performance-weighted sum of trees“ -> Better training performance
 and continuous output from 0 to 1

● Implementation used: DecisionTreeClassifier from 
scikit-learn, boosted by AdaBoostClassifier

● Easy to set up, but not many options for parameter tuning
● Far more transparent than neural networks, leading to better 

insight into the discrimination power of individual variables

● Limited overall performance due to the nature of linear cuts
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BDT Parameter Comparison: Frequency of each Variable
as a branch in a decision tree

(Only one example training run drawn)
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BDT Parameter Comparison: Frequency of each Variable
as a branch in a decision tree

(Only one example training run drawn)
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BDT Parameter Comparison: Frequency of each Variable
as a branch in a decision tree

(Only one example training run drawn)

=> Importance of different time regimes of the detector event readout window!
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Not enough 
separation

sufficient separation 
and PE count Afterpulsing
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Support Vector Machines

[stats.stackexchange.com]

Generic Example:
High Signal Likelihood

High Background Likelihood

● Implementation used: SVC by scikit-learn

● SVMs try to find the ideal hypersurface cut 
between two event populations by transforming 
the input parameter space and classify input 
events by a resulting distance metric

● Best performance achievable with the ‘radial 
basis function’ kernel

● Usually better performance compared to 
boosted decision trees, but less transparency
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Machine learning methods can significantly outperform 
conventional TTR analysis

Compared with BDT: Compared with SVM:

(Shown here: Discrimination against AtmNC background)
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=> TUMKolleg student Simon Basten further improving BDT and 
SVM performance by careful hyper-parameter tuning

(Shown here: Discrimination against AtmNC background)

[Simon Basten, 2023]
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Interesting observations: SVM performance with a polynomial 
kernel function is highly dependent on its degree. 

Polynomial kernel degree

[Simon Basten, 2023]

=> Small insight into ‘shape’ of multi-dimensional event populations.
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Interesting observations: BDTs can reach greater 
performance as ‘weak learners’

=> No notable performance gain from increased tree depth after a certain point, 
but greater performance increase from added SDTs.

SDT depth Number of SDTs per BDT

[Simon Basten, 2023]
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=> TUMKolleg student Simon Basten further improving BDT and 
SVM performance by careful hyper-parameter tuning

(Shown here: Discrimination against AtmNC background)

=> BDT using ‘weak learner’ technique is now the 
best performing of the three studied ML tools.

[Simon Basten, 2023]
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Conclusions / Outlook

Thank you for your attention!

● Our main background comes from atmospheric NC events, but machine learning can 
greatly help our pulse shape discrimination.

● Careful parameter optimization can notably improve the discrimination performance of 
our machine learning tools.

● Liquid scintillator particle identification PSD has not been done at such high energies 
in previous experiments.

● Depending on our recent/future beamtime results, we might have a more challenging 
PSD task at these high energies than estimated from low-MeV results.
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Backup Slides
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DSNB
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DSNB - Expected Signal

[Julia Sawatzki, 2020]

~6 orders of magnitude below solar 8B neutrino flux
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Data Preparation / Setup
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There are different fiducial volume options available for 
the DSNB event search in the JUNO LS

 

FV1: FV2:

73.9 % of the 
detector volume

~ 92 % of the 
detector volume

Revt<16 m √x2
+ y2

<16 m

z<16 m



JUNO LS
LAB + 2.5 g/l PPO 

+ 3 mg/l BisMSB

Proton recoil spectra for different initial n energies

Joint project: 
• Technical University of 

Munich
• JGU Mainz with PRISMA+

• UC and LBNL Berkeley 

Study:
• time profiles for gamma 

and neutron excitation 
• QFs for gamma and 

neutron interactions

Successfully measuring the scintillation 
time profiles and quenching factors for 
JUNO and JUNO-TAO LSs allows us to 
improve our understanding of the 
energy transfer mechanisms!

Measurements provide valuable input 
data for JUNO and TAO:

• Basis for reliable Monte 
Carlo simulations 

• Development of event 
reconstruction 
algorithms and PSD 
techniques 

Beamtimes at the LNL in June 2021, 
December 2021, April/May 2022 ⇒ Data 
analysis ongoing!

PSD and p-quenching study at the INFN-LNL

ToF distance

Τ1∼ 4.5ns

PhD Thesis V. Zimmer
(MLL Garching)

R. Stock, H. Steiger et al., 
in prep., 2022
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𝐿𝑖+𝑝→ 𝐵𝑒+𝑛77
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We expect the scintillation time profile of background 
neutrons/protons to become more signal-like at higher energies:

● The scintillation time profile caused by a 
particle in LAB mostly depends on its energy 
loss rate dE/dx.

● At lower energies (< 10 MeV): background 
neutrons/protons lose significantly more 
energy per distance than signal positrons.

● At higher energies: neutrons/protons lose less 
energy per distance than at lower energies.

– Closer to the dE/dx of positrons

● We plan to measure this effect at beamtimes 
at LNL Legnaro.

Higher E
kin

, lower dE/dx
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Setup
● IBD signal positrons and background neutrons in 

the DSNB energy ROI (12-35 MeV)

● Multiple sets of background neutrons for different 
linear combinations between n and e+ time profiles

● Then: SVM discrimination between each neutron 
time profile set and the IBD positron set. 

(generic SVM example)
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As the high-energy neutron time profile approaches the positron 
time profile, we steadily lose discrimination performance.

ROC curves:
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After the half-way point between both time profiles we see an 
even stronger decrease in PSD performance.
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TTR Analysis
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The same contour cut can also be applied in the rejection of 
FastN Events
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Machine Learning
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Training results – Example Output
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Training results – Example Output

-> Alternating IBD likelihood cutoff to vary background rejection 
against signal acceptance (e.g. in an ROC curve)
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