Pulse Shape Discrimination in Scintillator Detectors

Xiaojie Luo Institute of High Energy Physics 2024/09/20

Detecting Neutrino with Scintillator Detectors

Scintillator detection technique is popular for detecting neutrino

- Scintillator: Material emits light after neutrino interactions.
- Key Function: Detect light flashes (scintillations) using photon sensors.
- Advantage: Highly sensitive to low-energy neutrinos.
- Challenge: Exclude backgrounds

Background Suppression in Scintillator Detectors

- Background shielding
- Muon veto
- Prompt-delayed coincident selection
 - Inverse Beta Decay(IBD): $\bar{\nu}_e$
 - Unstable isotopes(Bi-Po, ¹¹C and so on)
- Pulse Shape Discrimination(PSD)
 - Utilize timing response to separate particles
 - Distinguish singles event(e/γ , p/n, α)
- Event topology
- And so on ...

Detecting DSNB with Scintillator Detectors

To detect DSNB $\bar{\nu}_e$ in scintillator detectors, it is essential to distinguish rare signals from plenty of backgrounds:

- Natural radioactivity background
- Atmospheric neutrino
 - Charge current (CC)
 - Neutral current (NC)
- Cosmic ray related backgrounds
 - Fast neutron (FN)
 - ⁹Li/ ⁸He
 - •
- Reactor neutrino

Detecting DSNB with Scintillator Detectors

Tangle with backgrounds:

- Natural Radioactivity background
- Atmospheric neutrino
 - Charge current (CC)
 - Neutral current (NC)
- Cosmic ray induced backgrounds
 - Fast neutron (FN)
 - ⁹Li/ ⁸He
 - •
- Reactor neutrino

Background shielding and promptdelayed coincident selection

Pulse Shape Discrimination

NC and FN are the main backgrounds after promptdelayed cut, that is why PSD is important

luoxj@ihep.ac.cn

Pulse Shape Discrimination

S. Yousefi et al. /

Methods in Physics

551-555

Nuclear Instruments and

Research A 598 (2009)

Different particles has distinct fluorescent time profiles Many methods to describe the timing shape:

Charge Integration Method

- Tail-to-Total Ratio
- Gatti's Method

Zero-Crossing Method

M. Nakhostin, Nuclear Instruments and Methods in Physics Research Section A 672 (2012) 1-5.

Machine Learning

- **Boosted Decision Tree**
- Multi-layer Perceptron

BOREXINO: D. BASILICO et al. PHYS. REV. D 109, 112014 (2024) JUNO: Cheng et al. Eur. Phys. J. C 84, 482 (2024).

Discrete Wavelet Transform

-0.6

-0.8

luoxj@ihep.ac.cn

. . .

Prospect for DSNB Detection with JUNO

Apply PSD on prompt signal to distinguish signal and background

- DSNB $\rightarrow e^+$
- NC \rightarrow Nuclei Recoil and Secondary $\gamma (e^+/e^-)$

Developed two Machine Learning (ML) based PSD techniques in JUNO:

- Boosted Decision Trees (BDT)
- Neural Network (NN)

Cheng et al. Eur. Phys. J. C 84, 482 (2024).

Emission Time Profiles in Simulation

- **1.Training**: The decision tree learns to split data at each node based on a variable that best separates signal from background.
- **2.Boosting**: After each tree is created, misclassified events are given more weight, and a new tree is built to focus on these harder-to-classify cases.
- **3.Prediction**: The final model applies these trees in sequence to classify target samples.
- **Easy to use:**<u>TMVA</u> (Toolkit for Multivariate Analysis) in ROOT

Boosted Decision Trees

Input: Several discrimination variables (features)

Basic idea: Successive decision nodes are used to categorize the events

How it Works:

Variables for Discrimination

Variables for Discrimination

Also, we can fit the shape

PSD with Boosted Decision Trees

Utilize multiple variables to describe the timing shape

- Correlation between variables
- Combine advantages from several methods

More Lazy Way

How about directly inputing shape into "machine", let "machine" do the rest

Neural Network Method for PSD

- Model: Multi-layer Perceptron
- Input: binned time profile and event information
 - Charge-weighted profile: correct bias introduced by multi-PE hits
 - Unweighted profile: good for single-PE hits avoiding PMT charge smearing
 - \succ R³: vertex dependency

Abusleme et al. Eur. Phys. J. C 82, 1168 (2022).

PSD Performance

For JUNO detector radius R<16m,

Achieved NC background inefficiency:1%, DSNB signal efficiency ~ 85%

Great improvement comparing with previous result (signal efficiency~50%) in JUNO(2015)

Background Inefficiency

Physics Interpretations

Seems very nice performance. But why there is peak around ~16 MeV?

0.08 Background PSD inefficiency BDT O NN 0.06 Atm-v NC w/ 11C Atm-v NC w/o 11C 0.04 ð 0.02 0.00 30 12 28 18 14 16 24 Prompt energy [MeV]

Background Inefficiency

Physics Interpretations

It is important to understand residual background, define lepton ratio in simulation: $R_{e\gamma} = \frac{\sum_{e^{\pm}, \gamma} E}{E_{total}}$

Residual backgrounds tend to have large R_{lepton} i.e. some γs generated during the interaction.

Physics Interpretations

Residual background mostly results from neutron inelastic scattering in ¹¹C channel of NC: $v_x + {}^{12}C \rightarrow {}^{11}C + n$

- Inelastic scattering generates γ causing mixing up neutron background with e^+ signal
- Energy-dependent inefficiency origins from energy dependency of cross section.

PSD Uncertainty Evaluation

To evaluate the PSD systematic uncertainty:

≻Control samples

- Neutron sources: Spallation neutron, radioactivity calibration source
- e-/e+: Michael electron
- ► Well-tuned simulation
 - Lab measurement input about scintillator properties

Energy Dependency of Scintillator Time Property

- For DSNB sensitivity study for JUNO, pulse shapes used for E_{vis}=10~30 MeV base on lowed energy sources^[1]
- Time constants of scintillator could be energy dependent
 - From previous study, some scintillators show energy dependency on timing property like liquid xenon

Fig. 3. τ_2 as a function of incident electron energy E_{electron} . Teymourian et al. [17] used data from 122 keV gamma-ray from ⁵⁷Co so the same error as this work was applied. Dawson et al. [15] and Keto et al. [13] reported τ_2 at higher the energy region $E_{\text{electron}} > 100$ keV. Some Refs. [10,11,18] are not drawn because E_{electron} is unknown.

H. Takiya et al. / Nuclear Instruments and Methods in Physics Research A 834 (2016) 192–196

Energy Dependency of Scintillator Time Property

- Fluorescent process correlated to ionization
- Timing property of distinct particles could origin from ionization density(dE/dx) difference.
- >As energy of particles increases, dE/dx difference decreases
 - Excitation **Excited Singlet States** (Absorption) 10⁻¹⁵ Seconds Vibrational **Energy States** Internal Internal Conversion Conversion and Delayed Vibrational Fluorescence Relaxation (10-14- 10-11 Sec) Excited Triplet State Fluorescence (T_) Intersystem (10⁻⁹- 10⁻⁷ Sec) Crossing Intersystem Ion-Radiative Crossing Relaxation (Triplet) Quenching hosphorescence (10-3- 102 Sec) Non-Radiative s Relaxation Figure 1 Ground State

→ Separation power of timing property could be weaken

luoxj@ihep.ac.cn

How could dE/dx Dependence be like?

If LS timing property is dE/dx dependent, how could it be like?

The most simple case:

Parameterize time profile

dE/dx Dependence Measurement

Measure time profile under various dE/dx

• Ions beam with $Z \in [1,11]$ cover $dE/dx \sim [0.3, 40]$ MeV/mm

So far, we are still waiting for the beam

luoxj@ihep.ac.cn

dE/dx Dependence Measurement

A hint for dE/dx dependence

- Measured time profile of JUNO under $E_k = 100 \sim 300 \text{ MeV/u}$ isotope of hydrogen (Z=1) with dE/dx is close to e/γ
- Similar timing property between e/γ and high energy hydrogen isotopes

Energy Dependency of Timing Property

Related effort in the lab is ongoing in JUNO group

- Direct measurement on neutron timing property under DSNB energy region
- Construct dE/dx dependent timing model for liquid scintillator

Summary

- Pulse Shape Discrimination (PSD) is essential for distinguishing DSNB signal from backgrounds.
- The residual background in DSNB detection in scintillator detectors mainly results from neutron inelastic scattering.
- Timing property of scintillator could be energy dependent which could worse PSD performance, and related measurement is ongoing.

Backup

Boosted Decision Trees for PSD

Utilize multiple variables to describe the timing shape

- Utilize correlation between variables to optimize cut
- Combine variables from several methods like TTR to benefit from distinct methods

The LS time profile can be described by **sum of several exponential functions** (Atm- ν NC: a larger portion of long decayed components)

Evaluate decayed components by fitting the tail (Time∈[0,800]):

$$f(t) = N \times \left[\frac{\eta}{\tau_1} \exp\left(-\frac{t}{\tau_1}\right) + \frac{1-\eta}{\tau_2} \exp\left(-\frac{t}{\tau_2}\right)\right] + \frac{n_{dark}}{n_{dark}}$$

- - Fast neutron (FN)
 - ⁹Li/ ⁸He
- Reactor neutrino

2024/9/20

Prospect for DSNB Detection with JUNO

Detect $\overline{\nu}_{\rho}$ of DSNB

Detection channel: Inverse Beta Decay(IBD)

Signal event rate: 2~4 events per year

>Backgrounds after prompt-delayed cut:

- Atmospheric neutrino
 - Charge current (CC)
 - Neutral current (NC)

Despite applying prompt-delayed cut, the DSNB signal remains obscured by backgrounds. That is why PSD is important in DSNB detection.

