Prospects for DSNB detection in THEIA

 $++$ SN Neutrino Workshop ++ Oak Ridge, Mar 6, 2023 +++ Michael Wurm (Mainz) ++ $+$ JG $|U|$ PRISMA⁺

Hybrid Cherenkov/Scintillation Detector

\rightarrow Enhanced sensitivity to broad physics program

Michael Wurm (Mainz) **DSNB** in THEIA

Hybrid Cherenkov-scintillation detection

MeV-GeV neutrino experiments use

- → **Scintillation:** enables good energy resolution and low thresholds
- → **Cherenkov effect:** particularly useful for reconstruction of direction and (multiple) tracks
- → Cherenkov photons *are* produced in liquid scintillators (~5%), but the majority is scattered or absorbed before reaching PMTs

How to extract the Cherenkov signal?

- \rightarrow enhance liquid transparency and/or
- \rightarrow slow down scintillation emission
- \rightarrow Water-based liquid scintillators (GeV) and slow scintillators (MeV)

note: some of the following can be tried

Water-based liquid scintillators (WbLS)

Minfang Yeh, BNL

 \rightarrow properties of target medium can be adjusted to physics goal \rightarrow water content offers additional options for metal loading

Photo Sensors for Separating Chertons and Scintons

Scintillation

 50°

 90°

LAPPDs tts~60ps

Dichroicons spectral sorting

PMT granularity

 $180°$ angle

THEIA25 as DUNE Module of Opportunity

Detector specifications

§ **Total mass:** 25 kt of WbLS **Fiducial mass:** 17-20 kt

§ **Photosensors:**

§ **Background levels:**

Radiopurity (H₂O): \sim 20⁻¹⁵ g/g in ²³⁸U, ²³²Th, ⁴⁰K

22,500x 10" PMTs 25% coverage w/ high QE \rightarrow equals the current photon collection of SK! 700x 8" LAPPDs ~3% coverage \rightarrow upgrade for later phases (solar, 0νββ)

Rock shielding: 4300 m.w.e. \rightarrow muon flux at SURF only ~10% of LNGS

Optimum Layout: THEIA100

Detector Specifications

- § **Detector mass:** ca. 100 kt
- § **Dimensions:** 50-by-50 m (WbLS transparency)
- § **Photosensors:** mix of conventional PMTs (light collection) and LAPPDs (timing)
- **Example 2 Location:** deep lab with neutrino beam (e.g. new cavern at SURF)

THEIA : Phased Physics Program

scintillator properties will be adjusted to physics requirements,

e.g. 1% WbLS \rightarrow 10% WbLS \rightarrow slow scintillator

Development Path of Hybrid Detectors

ANNIE Experiment

Accelerator Neutrino Nucleus Interaction Experiment

27-ton (Gd-loaded) Water Cherenkov Detector running in the **Fermilab BNB neutrino beam**

- measurement of GeV neutrino differential cross-sections and neutron multiplicity à **data to understand NC background rates for DSNB**
- § physics data taking started in early 2021
- R&D program for new technologies \rightarrow Gd-water \rightarrow LAPPDs \rightarrow WbLS

ANNIE Detector Layout

LAPPDs in ANNIE

- § first LAPPD deployed in 2022
- commissioning: integration with PMT system and MRD, time calibration, trigger integration
- § by now, three LAPPDs (#0-2) up and running
- LAPPD #3 and #4 being characterized
- in context of WbLS/SANDI: aim to demonstrate time separation of Cherenkov and fast (~2ns!) scintillation component

LAPPD Imaging and Timing Capabilities

Active Volume

ANNIE WbLS test deployment

removed in May after taking 2 months worth of beam data

SANDI vessel & support frame inserted in Jan

Insertion of vessel inside ANNIE tank in March

SANDI Acrylic Vessel

■ cylinder holding 365 kg of WbLS submerged in ANNIE water tank

à **first run (March 2023):**

- WbLS produced at BNL: 0.5% organic fraction
- estimate observed light yield: ~80% of Cherenkov output

First Neutrinos Detected in WbLS

- § comparison of **pure water** (orange) and **SANDI WbLS data** (blue)
- additional population of SANDI events with higher light output
- § best visible in upstream ("back") PMTs that see mostly scintillation photons
- effective scintillation light ouput ~80% of Cherenkov (from Michel electrons)

What's next?

- 2nd SANDI deployment with Gd-loaded WbLS à *next week*
- § prepare to deploy full-volume (8t WbLS) nylon vessel
	- \rightarrow full event reco
	- \rightarrow hadronic recoils
	- \rightarrow neutron ranging

Astrophysical neutrinos at low energies

Solar Neutrinos precision measurements of CNO neutrinos and $P_{ee}(E)$ with Li/Cl loading

Supernova Neutrinos astrophysics of core collapse (exotic) oscillation effects

Diffuse Supernova Neutrinos red-shift dep. Supernova rate average SN neutrino spectrum

Geoneutrinos crust/mantle contributions U/Th ratio

Astrophysical neutrinos at low energies

Solar Neutrinos precision measurements of CNO neutrinos and $P_{\text{ee}}(E)$ with Li/Cl loading

Geoneutrinos crust/mantle contributions U/Th ratio

Supernova Neutrinos astrophysics of core collapse (exotic) oscillation effects

Diffuse Supernova Neutrinos red-shift dep. Supernova rate average SN neutrino spectrum

Hybrid detectors offer

§ Cherenkov: particle ID, discriminating isotropic BGs

■ Scintillation:

good energy resolution, low threshold, pulse shape discrimination

■ C/S ratio: BG discrimination for particles with low/no Cherenkov light output

Michael Wurm (Mainz) **16 (1998)** 1999 - The Michael Wurden of the Michael Wurm (Mainz) 16 (1998) 16 (1998) 16 (1999)

DSNB in THEIA

DSNB Signal (and Backgrounds) in THEIA

all following slides based on Sawatzki, Wurm, Kresse (2021)

- § (raw) signal and backgrounds in WbLS are not very different from organic LS \rightarrow cross-sections for v interactions/ μ spallation on carbon/oxygen comparable
- main backgrounds: atmospheric v NC reaction, fast neutrons

raw event spectrum (without background discrimination) assumes 5% WbLS at SURF/4800 mwe neutron tag from H capture

Background Reduction in a Hybrid Detector

- § Downside: presence of scintillation makes hadronic recoils/decay products visible! \rightarrow background levels as in JUNO
- Upside: detection can use background discrimination techniques of BOTH Cherenkov and scintillation detectors
- BG discrimination techniques available:
	- \circ muon/neutron tagging (⁹Li)
	- o fiducial volume (fast neutrons, FN)
	- \circ scintillation pulse shape (atm.NC, FN)
	- o delayed decays (atm.NC)
	- o Cherenkov ring counting (atm.NC)
	- o **AND:** Cherenkov/scintillation ratio

Example: Ring-Counting to tag atmospheric NC BG

Cherenkov-Scintillation Ratio

- § basic idea:
	- signals from IBD positrons feature a high amount of Cherenkov light compared to their scintillation output
	- low-energy protons, alphas etc. produce next to no Cherenkov light
- \rightarrow great tool to discriminate Fast Neutrons (recoil protons) and Atm. NC Interactions (nuclear fragments)
- \blacksquare residual from events with excited oxygen nuclei emitting 6 MeV gammas (c.f. SK-Gd)
- discrimination efficiency can be tuned depending on C/S ratio cut
- \rightarrow here: 82% efficiency at 3% residual BG

Cherenkov/scintillation ratio for BG discrimination

Signal and Background after Discrimination

Background rejection techniques used:

- basic cuts (e.g. 1 delayed neutron, µ veto)
- selection of single-ring events
- selection of events with high C/S ratio
- rejection of events with delayed decays
- combined signal efficiency: >80% residual background ratio: 1.3%
- note: this does not yet use pulse shape!

Signal/BG spectra in observation window

Number of events after BF cuts: basic selection (e.g. 1 delayed neutron), single-ring cut, C/S cut, delayed decays (event rates in brackets for THEIA-25 geometry) – pulse shape discrimination not used!

THEIA in the DSNB landscape

- → **THEIA25** would add to the overall event statistics and help to reduce background systematics
- → **THEIA100** would quickly (10-year scale) accumulate 100s of events, permitting **spectroscopy of the DSNB** with good energy resolution & low background

Conclusions

§ **As a hybrid Cherenkov/scintillation detectors, THEIA** offers a large dynamic range, enhanced event reconstruction and new background discrimination capabilities

 \rightarrow additional BG discrimination capabilities provide excellent sensitivity for the DSNB

■ with ANNIE, EOS, BNL and BUTTON detectors, (multi-)ton scale demonstrator experiments are upcoming or running and will provide first physics data

Thank you!

EPJC 80, 416 (2020), arXiv:1911.03501

Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/s10052-020-7977-8 **THE EURO PHYSICAL**

Regular Article - Experimental Physics

THEIA: an advanced optical neutrino detector

M. Askins^{1,2}, Z. Bagdasarian³, N. Barros^{4,5,6}, E. W. Beier⁴, E. Blucher⁷, R. Bonventre², E. Bourret², E. J. Callaghan^{1,2}, J. Caravaca^{1,2}, M. Diwan⁸, S. T. Dye⁹, J. Eisch¹⁰, A. Elagin⁷, T. Enqvist¹¹, V. Fischer¹², K. Frankiewicz¹³, C. Grant¹³, D. Guffanti¹⁴, C. Hagner¹⁵, A. Hallin¹⁶, C. M. Jackson¹⁷, R. Jiang⁷, T. Kaptanoglu⁴ J. R. Klein⁴, Yu. G. Kolomensky^{1,2}, C. Kraus¹⁸, F. Krennrich¹⁰, T. Kutter¹⁹, T. Lachenmaier²⁰, B. Land^{1,2,4}, K. Lande⁴, J. G. Learned⁹, V. Lozza^{5,6}, L. Ludhova³, M. Malek²¹, S. Manecki^{18,22,23}, J. Maneira^{5,6}, J. Maricic⁹, J. Martyn¹⁴, A. Mastbaum²⁴, C. Mauger⁴, F. Moretti², J. Napolitano²⁵, B. Naranjo²⁶, M. Nieslony¹⁴, L. Oberauer²⁷, G. D. Orebi Gann^{1,2,a}, J. Ouellet²⁸, T. Pershing¹², S. T. Petcov^{29,30}, L. Pickard¹², R. Rosero⁸, M. C. Sanchez¹⁰, J. Sawatzki²⁷, S. H. Seo³¹, M. Smiley^{1,2}, M. Smy³², A. Stahl³³, H. Steiger²⁷, M. R. Stock²⁷, H. Sunej⁸, R. Syoboda¹², **E.** Tiras¹⁰, W. H. Trzaska¹¹, M. Tzanov¹⁹, M. Vagins³², C. Vilela³⁴, Z. Wang³⁵, J. Wang¹², M. Wetstein¹⁰, M. J. Wilking³⁴, L. Winslow²⁸, P. Wittich³⁶, B. Wonsak¹⁵, E. Worcester^{8,34}, M. Wurm¹⁴, G. Yang³⁴, M. Yeh⁸, E. D. Zimmerman³⁷, S. Zsoldos^{1,2}, K. Zuber³⁸ ¹ Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA ² Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8153, USA ³ Forschungszentrum Jülich, Institute for Nuclear Physics, Wilhelm-Johnen-Straße, 52425 Jülich, Germany ⁴ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396, USA ⁵ Faculdade de Ciências (FCUL), Departamento de Física, Campo Grande, Edifício C8, Universidade de Lisboa, 1749-016 Lisbon, Portugal ⁶ Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal ⁷ Department of Physics, The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA ⁸ Brookhaven National Laboratory, Upton, NY 11973, USA ⁹ University of Hawai'i at Manoa, Honolulu, HI 96822, USA ¹⁰ Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA ¹¹ Department of Physics, University of Jyväskylä, Jyvaskyla, Finland ¹² University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA ¹³ Department of Physics, Boston University, Boston, MA 02215, USA ¹⁴ Institute of Physics and Excellence Cluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany ¹⁵ Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany ¹⁶ Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, AB T6G 2E1, Canada ¹⁷ Pacific Northwest National Laboratory, Richland, WA 99352, USA

- ¹⁸ Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- ¹⁹ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
- ²⁰ Kepler Center for Astro and Particle Physics, Universität Tübingen, 72076 Tübingen, Germany
- ²¹ Physics and Astronomy, Western Bank, University of Sheffield, Sheffield S10 2TN, UK
- ²² Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada
- ²³ SNOLAB, Creighton Mine 9, 1039 Regional Road 24, Sudbury, ON P3Y 1N2, Canada

²⁴ Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019,

THEIA proto-collaboration: groups from 35+ institutions and eight countries (CA, CN, DE, FI, IT, KR, UK, US)

More information on:

- Detector technology
- **Example 3 Long baseline sensitivity**
- Low energy neutrino astronomy
- Neutrinoless ββ-decay
- Nucleon decay

§ …