Prospects for DSNB detection in THEIA

++ SN Neutrino Workshop ++ Oak Ridge, Mar 6, 2023 +++ Michael Wurm (Mainz) ++

Hybrid Cherenkov/Scintillation Detector

\rightarrow Enhanced sensitivity to broad physics program

Michael Wurm (Mainz)

Hybrid Cherenkov-scintillation detection

MeV-GeV neutrino experiments use

- → Scintillation: enables good energy resolution and low thresholds
- → Cherenkov effect: particularly useful for reconstruction of direction and (multiple) tracks
- → Cherenkov photons are produced in liquid scintillators (~5%), but the majority is scattered or absorbed before reaching PMTs

How to extract the Cherenkov signal?

- \rightarrow enhance liquid transparency and/or
- \rightarrow slow down scintillation emission
- → Water-based liquid scintillators (GeV) and slow scintillators (MeV)

note: some of the following can be tried as well in a large organic LS detector

Michael Wurm (Mainz)

Water-based liquid scintillators (WbLS)

→ properties of target medium can be adjusted to physics goal
 → water content offers additional options for metal loading

Photo Sensors for Separating Chertons and Scintons

Scintillation

LAPPDs tts~60ps

Dichroicons spectral sorting

PMT granularity

THEIA25 as DUNE Module of Opportunity

Detector specifications

- Total mass:
 Fiducial mass:
- Photosensors: 22,500x 10'' PMTs

700x 8" LAPPDs

25% coverage w/ high QE ~3% coverage

 Background levels: Radiopurity (H₂O): Rock shielding:

~10⁻¹⁵ g/g in ²³⁸U, ²³²Th, ⁴⁰K 4300 m.w.e. → equals the current photon collection of SK! → upgrade for later phases (solar, $0\nu\beta\beta$)

ightarrow muon flux at SURF only ~10% of LNGS

Optimum Layout: THEIA100

Detector Specifications

- Detector mass: ca. 100 kt
- Dimensions: 50-by-50 m (WbLS transparency)
- Photosensors: mix of conventional PMTs (light collection) and LAPPDs (timing)
- Location: deep lab with neutrino beam (e.g. new cavern at SURF)

THEIA : Phased Physics Program

scintillator properties will be adjusted to physics requirements,

e.g. 1% WbLS \rightarrow 10% WbLS \rightarrow slow scintillator

Primary physics goal	Reach	Exposure/assumptions	
Long-baseline oscillations	>5 σ for 30% of δ_{CP}	524kt-MW-year	
Nucleon decay p→⊽K+	T>3.8 x 10 ³⁴ year 800 kt-year		
Supernova burst	<1(2)° pointing 20K(5K) events 100(25)kt, 10kpc SN		
Diffuse Supernova Neutrino	5σ	l 25kt-year	
CNO neutrinos	<5(10)% 300(62.5)kt-year		
Geoneutrinos	< 7 %	< 7 % 25 kt-year	
Οννβ	$T_{1/2} > 1.1 \times 10^{28} \text{ year (90\%C.L.)} $ 800 kt-year (Multi-tonne load LS in suspended vessel searc		

Development Path of Hybrid Detectors

ANNIE Experiment

Accelerator Neutrino Nucleus Interaction Experiment

27-ton (Gd-loaded) Water Cherenkov Detector running in the **Fermilab BNB neutrino beam**

 measurement of GeV neutrino differential cross-sections and neutron multiplicity

\rightarrow data to understand NC background rates for DSNB

- physics data taking started in early 2021
- R&D program for new technologies
 → Gd-water → LAPPDs → WbLS

ANNIE Detector Layout

LAPPDs in ANNIE

- first LAPPD deployed in 2022
- commissioning: integration with PMT system and MRD, time calibration, trigger integration
- by now, three LAPPDs (#0-2) up and running
- LAPPD #3 and #4 being characterized
- in context of WbLS/SANDI: aim to demonstrate time separation of Cherenkov and fast (~2ns!) scintillation component

LAPPD Imaging and Timing Capabilities

ANNIE WbLS test deployment

removed in May after taking 2 months worth of beam data

SANDI vessel & support frame inserted in Jan

Insertion of vessel inside ANNIE tank in March

SANDI Acrylic Vessel

- cylinder holding 365 kg of WbLS submerged in ANNIE water tank
- → first run (March 2023):
- WbLS produced at BNL: 0.5% organic fraction
- estimate observed light yield: ~80% of Cherenkov output

First Neutrinos Detected in WbLS

- comparison of pure water (orange) and SANDI WbLS data (blue)
- additional population of SANDI events with higher light output
- best visible in upstream ("back") PMTs that see mostly scintillation photons
- effective scintillation light ouput ~80% of Cherenkov (from Michel electrons)

What's next?

- 2nd SANDI deployment
 with Gd-loaded WbLS
 → next week
- prepare to deploy full-volume (8t WbLS) nylon vessel
 - \rightarrow full event reco
 - \rightarrow hadronic recoils
 - \rightarrow neutron ranging

Astrophysical neutrinos at low energies

Solar Neutrinos precision measurements of CNO neutrinos and P_{ee}(E) with Li/Cl loading Supernova Neutrinos astrophysics of core collapse (exotic) oscillation effects

Diffuse Supernova Neutrinos red-shift dep. Supernova rate average SN neutrino spectrum

Geoneutrinos crust/mantle contributions U/Th ratio

Astrophysical neutrinos at low energies

Solar Neutrinos precision measurements of CNO neutrinos and P_{ee}(E) with Li/Cl loading

Geoneutrinos crust/mantle contributions U/Th ratio Supernova Neutrinos astrophysics of core collapse (exotic) oscillation effects

Diffuse Supernova Neutrinos red-shift dep. Supernova rate average SN neutrino spectrum

Hybrid detectors offer

 Cherenkov: particle ID, discriminating isotropic BGs

Scintillation:

good energy resolution, low threshold, pulse shape discrimination

 C/S ratio: BG discrimination for particles with low/no Cherenkov light output

Michael Wurm (Mainz)

DSNB in THEIA

DSNB Signal (and Backgrounds) in THEIA

all following slides based on Sawatzki, Wurm, Kresse (2021)

- (raw) signal and backgrounds in WbLS are not very different from organic LS
 → cross-sections for v interactions/µ spallation on carbon/oxygen comparable
- main backgrounds: atmospheric v NC reaction, fast neutrons

visible scintillation energy (MeV) 10 15 25 30 35 0 5 20 45 raw event spectrum (without background Reactor BG discrimination) CC BG mNC BG _i9 BG assumes 5% WbLS FastN BG at SURF/4800 mwe neutron tag from H capture 10⁻² 10⁻³ 2 3 4 5 6 0 scintillation p.e.

Background Reduction in a Hybrid Detector

- Downside: presence of scintillation makes hadronic recoils/decay products visible!
 → background levels as in JUNO
- Upside: detection can use background discrimination techniques of BOTH Cherenkov and scintillation detectors
- BG discrimination techniques available:
 - muon/neutron tagging (⁹Li)
 - o fiducial volume (fast neutrons, FN)
 - o scintillation pulse shape (atm.NC, FN)
 - o delayed decays (atm.NC)
 - Cherenkov ring counting (atm.NC)
 - AND: Cherenkov/scintillation ratio

Example: Ring-Counting to tag atmospheric NC BG

Cherenkov-Scintillation Ratio

- basic idea:
 - signals from IBD positrons feature a high amount of Cherenkov light compared to their scintillation output
 - low-energy protons, alphas etc. produce next to no Cherenkov light
- → great tool to discriminate
 Fast Neutrons (recoil protons) and
 Atm. NC Interactions (nuclear fragments)
- residual from events with excited oxygen nuclei emitting 6 MeV gammas (c.f. SK-Gd)
- discrimination efficiency can be tuned depending on C/S ratio cut
- ightarrow here: 82% efficiency at 3% residual BG

Cherenkov/scintillation ratio for BG discrimination

Signal and Background after Discrimination

Background rejection techniques used:

- basic cuts (e.g. 1 delayed neutron, μ veto)
- selection of single-ring events
- selection of events with high C/S ratio
- rejection of events with delayed decays
- combined signal efficiency: >80% residual background ratio: 1.3%
- note: this does not yet use pulse shape!

Signal/BG spectra in observation window

20

		$100 \mathrm{kt}$ ·yrs exposure		
Spectral component	basic cuts	single-ring	C/S cut	delayed decays
DSNB signal	21.7	21.7	17.7 (17.4)	17.5 (17.2)
Atmospheric CC	2.0	2.0	1.7(1.6)	1.7(1.6)
Atmospheric NC	682	394	13.6(14.6)	7.4(7.9)
fast neutrons	0.8	0.8	<u> </u>	_
Signal efficiency	1	1	0.82(0.81)	0.81 (0.80)
Background residual	1	0.58	$0.022\ (0.024)$	$0.013 \ (0.014)$
Signal-to-background	0.03	0.05	1.2(1.1)	1.9(1.8)
Signal significance	0.8	1.1	3.1 (3.0)	3.4 (3.3)

Number of events after BF cuts: basic selection (e.g. 1 delayed neutron), single-ring cut, C/S cut, delayed decays (event rates in brackets for THEIA-25 geometry) – pulse shape discrimination not used!

	Michael Wurm (Mainz)	DSNB in THEIA
--	----------------------	---------------

THEIA in the DSNB landscape

In the global picture:

- → THEIA25 would add to the overall event statistics and help to reduce background systematics
- → THEIA100 would quickly (10-year scale) accumulate 100s of events, permitting spectroscopy of the DSNB with good energy resolution & low background

Conclusions

• As a hybrid Cherenkov/scintillation detectors, THEIA offers a large dynamic range, enhanced event reconstruction and new background discrimination capabilities

→ additional BG discrimination capabilities provide excellent sensitivity for the DSNB

with ANNIE, EOS, BNL and BUTTON detectors, (multi-)ton scale demonstrator experiments are upcoming or running and will provide first physics data

Thank you!

EPJC 80, 416 (2020), arXiv:1911.03501

Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/s10052-020-7977-8 THE EURC PHYSICAL

Regular Article - Experimental Physics

THEIA: an advanced optical neutrino detector

M. Askins^{1,2}, Z. Bagdasarian³, N. Barros^{4,5,6}, E. W. Beier⁴, E. Blucher⁷, R. Bonventre², E. Bourret², E. J. Callaghan^{1,2}, J. Caravaca^{1,2}, M. Diwan⁸, S. T. Dye⁹, J. Eisch¹⁰, A. Elagin⁷, T. Enqvist¹¹, V. Fischer¹², K. Frankiewicz¹³, C. Grant¹³, D. Guffanti¹⁴, C. Hagner¹⁵, A. Hallin¹⁶, C. M. Jackson¹⁷, R. Jiang⁷, T. Kaptanoglu J. R. Klein⁴, Yu. G. Kolomensky^{1,2}, C. Kraus¹⁸, F. Krennrich¹⁰, T. Kutter¹⁹, T. Lachenmaier²⁰, B. Land^{1,2,4}, K. Lande⁴, J. G. Learned⁹, V. Lozza^{5,6}, L. Ludhova³, M. Malek²¹, S. Manecki^{18,22,23}, J. Maneira^{5,6}, J. Maricic⁹, J. Martyn¹⁴, A. Mastbaum²⁴, C. Mauger⁴, F. Moretti², J. Napolitano²⁵, B. Naranjo²⁶, M. Nieslony¹⁴, L. Oberauer²⁷, G. D. Orebi Gann^{1,2,a}, J. Ouellet²⁸, T. Pershing¹², S. T. Petcov^{29,30}, L. Pickard¹², R. Rosero⁸, M. C. Sanchez¹⁰, J. Sawatzki²⁷, S. H. Seo³¹, M. Smiley^{1,2}, M. Smy³², A. Stahl³³, H. Steiger²⁷, M. R. Stock²⁷, H. Sunej⁸, R. Svoboda¹², E. Tiras¹⁰, W. H. Trzaska¹¹, M. Tzanov¹⁹, M. Vagins³², C. Vilela³⁴, Z. Wang³⁵, J. Wang¹², M. Wetstein¹⁰, M. J. Wilking³⁴, L. Winslow²⁸, P. Wittich³⁶, B. Wonsak¹⁵, E. Worcester^{8,34}, M. Wurm¹⁴, G. Yang³⁴, M. Yeh⁸, E. D. Zimmerman³⁷, S. Zsoldos^{1,2}, K. Zuber³⁸

- ² Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, 8153, USA
- ³ Forschungszentrum Jülich, Institute for Nuclear Physics, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- ⁴ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396, USA
- ⁵ Faculdade de Ciências (FCUL), Departamento de Física, Campo Grande, Edifício C8, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- ⁶ Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- ⁷ Department of Physics, The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
- ⁸ Brookhaven National Laboratory, Upton, NY 11973, USA
- ⁹ University of Hawai'i at Manoa, Honolulu, HI 96822, USA
- ¹⁰ Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- ¹¹ Department of Physics, University of Jyväskylä, Jyvaskyla, Finland
- ¹² University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
- ¹³ Department of Physics, Boston University, Boston, MA 02215, USA ¹⁴ Institute of Physics and Excellence Cluster PRISMA, Johannes Cuterna
- ¹⁴ Institute of Physics and Excellence Cluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
- ¹⁵ Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
- ¹⁶ Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, AB T6G 2E1, Canada
- ¹⁷ Pacific Northwest National Laboratory, Richland, WA 99352, USA
- ¹⁸ Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- ¹⁹ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
- ²⁰ Kepler Center for Astro and Particle Physics, Universität Tübingen, 72076 Tübingen, Germany
- ²¹ Physics and Astronomy, Western Bank, University of Sheffield, Sheffield S10 2TN, UK
- ²² Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada
- ²³ SNOLAB, Creighton Mine 9, 1039 Regional Road 24, Sudbury, ON P3Y 1N2, Canada

-24 Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019,

THEIA proto-collaboration: groups from 35+ institutions and eight countries (CA, CN, DE, FI, IT, KR, UK, US)

More information on:

- Detector technology
- Long baseline sensitivity
- Low energy neutrino astronomy
- Neutrinoless ββ-decay
- Nucleon decay

....

