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Goals for the DSNB
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Signal rate spectrum in detector in terms of measured energy

First ingredient: Neutrino spectrum, 
including mixing effects
(this spectrum is the key unknown)

Second ingredient: Core-collapse rate 
(known with reasonable precision)

Third ingredient: Detection capabilities
(well understood)

Theoretical Framework for the Signal
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Why Focus on the Neutrino Spectrum?

Neutrino spectrum is the only part that cannot be measured by astronomers

Neutrino spectrum:
Can be predicted multiple ways
Can be measured multiple ways
Has multiple observational signatures

Very rich scientific focus

These comparisons have crucial implications for astrophysics and physics
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Horiuchi et al. (2011) Lien, Fields, Beacom (2010)

Rates of Core Collapse: Successful and Failed
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Super-K Search Results

➔ Total of 956 days of SK-Gd 
data

➔ New ML-based neutron 
tagging and NCQE reduction 

➔ No statistically significant 
excess but minimum 
p-value of 0.04 

Energy Spectrum in SK-Gd

19

Results shown at 
Neutrino 2024

Fujita slide
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How to Define Sensitivity

Option 1: Flux limit above a certain energy
Insufficient ability to distinguish models

Option 2: Flux limits in small energy bins
Insufficient ability to represent models
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Original figure from Yuksel, Ando, Beacom (2006);
SN 1987A fits from Jegerlehner, Neubig, Raffelt (1996)

Option 3: Flux of equivalent simple models
Good balance that is adequate for low statistics

  Paper in preparation deals with variations,
  integrals, astro uncertainties, BH fraction, etc.
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DSNB in Other Flavors
nu_e in SNO, DUNE nu_x in SK, DM detectorsnuebar in JUNO, HK

Zhu, Li, Beacom (2019)

SNO (2020) Peres, Lunardini (2008)

Suliga, Beacom, Tamborra (2022)

Li, Vagins, Wurm (2022)

Need Hyper-K slide
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We Must Reduce Detector Backgrounds
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Most Important Detector Backgrounds

Most serious problems:

1. Reactor antineutrinos
       Can never go below ~10 MeV

2. Atmospheric NC interactions
       Should be reducible

3. Atmospheric CC interactions
      Should be reducible

4. Spallation decays
       Should be reducibleWhy do backgrounds matter so much?

Super-K (2024)
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Reactor Antineutrinos

Key points:

Turning off reactors does not help

Going to a remote location does not help

Beware the spectrum tail
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Atmospheric NC Interactions
Atmospheric Neutrinos

29

Towards better discrimination

● Machine-learning based DSNB vs. NCQE discrimination 
[Maksimovic et al., JCAP11 (2021) 051]

➔ Studies inspired by this paper have been developed within 
Super-K and are currently in the validation stage

Fig 9 from 
Maksimovic et al.

NCQE before

NCQE after

DSNB

Fujita slide



John Beacom, The Ohio State University DSNB Workshop, Mainz, September 2024 13

Atmospheric CC Interactions: Challenge

Key points:

Super-K uses fixed shapes, floating normalizations

Approximate calculation in Beacom and Vagins (2003)

First detailed calculation in Zhou and Beacom (2024)

Reducing backgrounds depends on understanding them

Zhou, Beacom (2024)
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Atmospheric CC Interactions: Setup and Validation

Key inputs:

Predicted atmospheric neutrino fluxes

Neutrino mixing (vacuum, matter effects)

Cross section simulation with GENIE

Particle propagation with FLUKA
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Atmospheric CC Interactions: Key Corrections
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Atmospheric CC Interactions: Results
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Atmospheric CC Interactions: Parent Neutrinos
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Atmospheric CC Interactions: Expected Impact

Selected recent activity on low-E atmospherics:
Kelly et al. (2019)
Newstead et al. (2021)
Cheng et al. (2021, 2021)
Chauhan, Dasgupta (2022)
Suliga, Beacom (2023)
Meighen-Berger et al. (2023)
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Atmospheric CC Interactions: Tasks for Super-K
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Spallation Decays: Challenge

Muon rate 2 Hz; betas to ~ 30 s
Cuts face inefficiency or deadtime



John Beacom, The Ohio State University DSNB Workshop, Mainz, September 2024 21

Spallation Decays: Key Steps

Experimental side

Empirical studies over decades

Kirk Bays (Ph.D., 2012)

Scott Locke (Ph.D., 2020)

Alice Coffani (Ph.D., 2021)

And many Super-K papers

Theoretical side

Galbiati and Beacom (2005)

Li and Beacom (2014)
Li and Beacom (2015)
Li and Beacom (2015)

Li et al. (2016)

And private communications
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Spallation Decays: Muon Energy Losses
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Spallation Decays: Showers

Li, Beacom (2015)
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Spallation Decays: Production Rates
6

Isotope Half-life (s) Decay mode Yield (total)
(⇥10�7µ�1g�1cm2)

Yield (E > 3.5 MeV)
(⇥10�7µ�1g�1cm2)

Primary process

n 2030
18N 0.624 �� 0.02 0.01 18O(n,p)
17N 4.173 ��n 0.59 0.02 18O(n,n+p)
16N 7.13 ��� (66%), �� (28%) 18 18 (n,p)
16C 0.747 ��n 0.02 0.003 (⇡�,n+p)
15C 2.449 ��� (63%), �� (37%) 0.82 0.28 (n,2p)
14B 0.0138 ��� 0.02 0.02 (n,3p)
13O 0.0086 �+ 0.26 0.24 (µ�,p+2n+µ�+⇡�)
13B 0.0174 �� 1.9 1.6 (⇡�,2p+n)
12N 0.0110 �+ 1.3 1.1 (⇡+,2p+2n)
12B 0.0202 �� 12 9.8 (n,↵+p)
12Be 0.0236 �� 0.10 0.08 (⇡�,↵+p+n)
11Be 13.8 �� (55%), ��� (31%) 0.81 0.54 (n,↵+2p)
11Li 0.0085 ��n 0.01 0.01 (⇡+,5p+⇡++⇡0)
9C 0.127 �+ 0.89 0.69 (n,↵+4n)
9Li 0.178 ��n (51%), �� (49%) 1.9 1.5 (⇡�,↵+2p+n)
8B 0.77 �+ 5.8 5.0 (⇡+,↵+2p+2n)
8Li 0.838 �� 13 11 (⇡�,↵+2H+p+n)
8He 0.119 ��� (84%), ��n (16%) 0.23 0.16 (⇡�,3H+4p+n)
15O 351 (�,n)
15N 773 (�,p)
14O 13 (n,3n)
14N 295 (�,n+p)
14C 64 (n,n+2p)
13N 19 (�,3H)
13C 225 (n,2H+p+n)
12C 792 (�,↵)
11C 105 (n,↵+2n)
11B 174 (n,↵+p+n)
10C 7.6 (n,↵+3n)
10B 77 (n,↵+p+2n)
10Be 24 (n,↵+2p+n)
9Be 38 (n,2↵)

sum 3015 50

Table I. Table of isotope yields. The top part has background isotopes for Super-K. The bottom part has isotopes that do
not cause backgrounds in Super-K, including those that are stable, have long half-lives, or decay invisibly or with a low beta
energy. The yields and production mechanisms are from simulation. For the 5th column, the Super-K energy resolution has
been taken into account in counting events with decay energies above the Super-K analysis threshold of 3.5 MeV, though it
makes little di↵erence. The observed 16N decay spectrum (including both betas and gammas) is taken from Ref. [57]. For
other isotope decays, only beta energies are included (gammas are ignored). Yields above 100 are rounded o↵ to 3 significant
digits; smaller yields are rounded o↵ to 2 significant digits. Isotopes with yields smaller than 0.01⇥ 10�7µ�1 g�1 cm2 or mass
numbers smaller than 8 (all of which are not backgrounds in Super-K) are ignored.

tent results, within a factor of 2, validate our approach.
The results show interesting di↵erences in the physics of
spallation in water and scintillator, as discussed in detail
below.

A. Predicted Yields

Table I shows the neutron and isotope yields per muon
along with associated details. Almost all isotopes made
by muons and their secondaries are listed (we skip iso-
topes with small yields or small mass numbers). Since
Super-K can only detect relativistic charged particles,
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tent results, within a factor of 2, validate our approach.
The results show interesting di↵erences in the physics of
spallation in water and scintillator, as discussed in detail
below.

A. Predicted Yields

Table I shows the neutron and isotope yields per muon
along with associated details. Almost all isotopes made
by muons and their secondaries are listed (we skip iso-
topes with small yields or small mass numbers). Since
Super-K can only detect relativistic charged particles,

Li, Beacom (2014)
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Spallation Decays: Shower Localization

Li, Beacom (2015)
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Spallation Decays: Shower Type

EM showers make lots of light but not isotopes; hadronic showers do the opposite
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Spallation Decays: Neutron Production
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Obada Nairat,
lead author
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Spallation Decays: Neutrons and Showers
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Spallation Decays: Neutrons and Isotopes
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Spallation Decays: Expected Impact

Main Results:

1.  Super-K with Gd
Reduce spallation by factor ~4

2.  Super-K with pure water
Promising to help big dataset

3.  Hyper-K
Would increase the effective depth

Bonus Results:

1.  JUNO and other detectors
Paper in preparation

2.  Fake supernova bursts
New technique to test readiness
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Spallation Decays: Tasks for Super-K

+ Study role of muon bundles

+ Redo analyses of spallation yields

+ Base geometric cuts on showers

+ Implement our methods

+ Get our help (for free)

Greatly reduce backgrounds

Improve sensitivity for DSNB, 
solar, reactor, other searches
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Concluding Remarks
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A Dream Scenario

à High-statistics measurement of DSNB in HK-Gd

Experimental side:

JUNO start
Hyper-K start
DSNB signals in Super-K, JUNO
DUNE start
Milky Way supernova
…

Other sides:

Star aspects measured well
Supernova aspects measured well
Supernova models advance well
Neutrinos measured well
Peace on Earth
…
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A Realistic Nightmare Element

Who will build detectors for supernova neutrinos?

timelarge detectors
used to measure
neutrino mixing

present and near future

maybe not
anymore

beyond that
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What Should We Do?

Make a strong, positive, forward-looking case for supernova physics
Why we need multiple detectors for multiple supernova flavors
Why THEY need supernova neutrinos to do their work

Make a strong, positive, forward-looking case for gadolinium technology
Why this is the best route towards discoveries in supernova science
Why THEY need gadolinium to do their work

Take clear, effective actions to show a unified community 
If we divide, we will be ignored
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Future of the DSNB

Neutrinos take patience, but they repay it richly


