Additional BSM Effects on the DSNB

Yuber F. Perez-Gonzalez

Towards the Detection of the Diffuse Supernova Neutrinos

September 18th, 2024

ESO/L Calcada

yuber.f.perez-gonzalez@durham.ac.uk

Oldest neutrinos within experimental reach! $z = 5 \longrightarrow t_{ago} \sim 12.6 \text{ Gyr}$

Towards the DSNB detection — September 18th, 2024

Oldest photons...

Oldest neutrinos, the $C\nu B$, probably not in our lifetime

Towards the DSNB detection — September 18th, 2024

We've seen this several times by now...

$$z_{\rm max} = 5$$

See also Daniel's talk

See also Daniel's talk

What can we learn?

We can look at the Universe's history through the neutrino's eyes

We've seen this several times by now...

Towards the DSNB detection — September 18th, 2024

What can we learn?

We can look at the Universe's history through the neutrino's eyes

Is there anything we can do with SK (10y) + JUNO?

Here's the homework Pablo asked for!

Towards the DSNB detection — September 18th, 2024

What can we learn?

We can look at the Universe's history through the neutrino's eyes

We've seen this several times by now...

Towards the DSNB detection — September 18th, 2024

Pseudo-Dirac Neutrinos

Pseudo-Dirac Neutrinos*

Let's consider the Dirac+Majorana Lagrangian

$$\mathscr{L}_{Y} = -\frac{\sqrt{2}}{v} M_{D} \overline{L} \widetilde{H} N_{R} + \frac{1}{2} \overline{N^{c}} M N + \text{h.c.}$$

$$M = \begin{pmatrix} 0_3 & M_D \\ M_D & M_R \end{pmatrix}$$

★ $M_R = 0$ → Dirac neutrinos
★ $M_R \gg M_D$ → Usual type I seesaw
★ $M_R \ll M_D$ → PseudoDirac neutrinos

Soft lepton number violation

Also technically natural case

Active neutrinos are a ~50-50 combination of two mass eigenstates

*I use "pseudo-Dirac" to describe active-sterile pairs

Towards the DSNB detection — September 18th, 2024

Pseudo-Dirac Neutrinos

$$m_{ks}^{2} = m_{k}^{2} + \frac{1}{2}\delta m_{k}^{2}$$
$$m_{ks}^{2} = m_{k}^{2} - \frac{1}{2}\delta m_{k}^{2}$$

Limits on δm_k^2

- Solar neutrinos $\delta m_k^2 \lesssim 10^{-12} \text{ eV}^2$
 - de Gouvêa et.al. 0906.1611, Donini et.al. 1106.0064
- * Atms neutrinos $\delta m_k^2 \lesssim 10^{-4} \text{ eV}^2$
 - Beacom et.al. 0307151
- * HE neutrinos $10^{-18} \text{ eV}^2 \lesssim \delta m_k^2 \lesssim 10^{-12} \text{ eV}^2$
 - de Gouvêa et.al. 0906.1611, Donini et.al. 1106.0064
- SN limits?

Beacom et.al. 0307151

SN1987A

Mild preference for a non-zero δm_k^2

Pseudo-Dirac Neutrinos — DSNB

Oldest neutrinos within experimental reach! $z = 5 \longrightarrow t_{ago} \sim 12.6 \text{ Gyr}$

Inspired on Beacom

Beacom, Ann.Rev.Nuc.Phys.Sc.2010 Lunardini, Astropart. Phys2016

*Assuming ΛCDM

Towards the DSNB detection — September 18th, 2024

Pseudo-Dirac Neutrinos — DSNB

Caveats:

- We assume all δm_k^2 are the same for all three generations, and there is maximal mixing between the PD pair
- We assume MSW happens as in the standard case. PD oscillations only starts to matter much later. We do not include fast flavor oscillations.
- The general trend doesn't depend on the specifics, since we're looking for an additional energy dependence on the events

Pseudo-Dirac Neutrinos — DSNB

de Gouvêa, Martinez-Soler, YFPG, Sen, 2007.13748

Pseudo-Dirac Neutrinos

Pseudo-Dirac Neutrinos

- 40% Normalization uncertainty
- Inv μ , atm ν 's

Pseudo–Dirac neutrinos – SK+JUNO (5y)

Towards the DSNB detection — September 18th, 2024 Yuber F. Perez-G. - IP

Mass-varying Neutrinos

Neutrino masses in Cosmology

Di Valentino, talk at CERN neutrino platform, 2023

Towards the DSNB detection — September 18th, 2024

Neutrino masses in Cosmology

 Cosmology doesn't forbid (yet) massless neutrinos at different redshifts

 Weaker constraints for smaller redshifts

* At "z=0" we observe oscillations

Koksbang, Hannestad, JCAP09(2017) 014

Neutrino masses in Cosmology — Current status

* Recent DESI results

Neutrino masses in Cosmology — Current status

What if neutrino masses different at earlier times?

An example of a model:

A model of dark neutrino mass

• Consider massless neutrinos scattering off ultralight scalar DM ϕ through a fermionic mediator χ .

Neutrino masses depend on the DM density

Dispersion for massless neutrinos: E = p(z) + V(z)

Below z=1000, neutrinos effectively massless. Can explain DESI results. M. Sen, NOW2024

Mass-varying neutrinos

What if neutrino masses were different in the past?

Modification of matter effects inside the SN

de Gouvêa, Martinez-Soler, YFPG, Sen, 2205.01102

Towards the DSNB detection — September 18th, 2024

Mass-varying neutrinos What if neutrino masses were different in the past? * Let's assume a purely $m_{\nu}(z) = \frac{m_{\nu}}{1 + (z/z_s)^{B_s}}$ $B_s \to \text{how fast}$ $z_s \to \text{when}$ phenomenological approach: Vacuum oscillations inside SN Probability at the Earth DSNB fluxes at the Earth 0.6 0.15 0.5 $\Phi_{\nu_e}(E) = \int_{-\infty}^{z_{\text{max}}} \frac{dz}{H(z)} R_{\text{CCSN}}(z) \left\{ P_{ee}(z)\phi_{\nu_e}^0 + (1 - P_{ee}(z))\phi_{\nu_x}^0 \right\}$ 0.1 $\begin{array}{c} (\bullet, 0.4) \\ \uparrow & 0.3 \\ (\bullet, \bullet) \\ \bullet & 0.2 \end{array}$ 0.05 $\Phi_{\bar{\nu}_e}(E) = \begin{cases} z_{\max} \frac{dz}{H(z)} R_{\text{CCSN}}(z) \left\{ \overline{P_{ee}}(z) \phi_{\bar{\nu}_e}^0 + (1 - \overline{P_{ee}}(z)) \phi_{\nu_x}^0 \right\} \end{cases}$ 0. 1.1 1.2 0.2 $\Phi_{\nu_x}(E) = \int_{0}^{z_{\text{max}}} \frac{dz}{H(z)} R_{\text{CCSN}}(z) \frac{1}{4} \left\{ (1 - P_{ee}(z))\phi_{\nu_e}^0 + (1 - \overline{P_{ee}}(z))\phi_{\bar{\nu}_e}^0 \right\}$ 0.1 $z_s = 0.32$ and $B_s = 5$ $+(2+P_{ee}(z)+\overline{P_{ee}}(z))\phi_{\nu_{x}}^{0}$ 0. 10^{-1} 10^{0} 10¹ Ζ

 $\phi^0_{\nu_e,\overline{\nu}_e,\nu_x} \longrightarrow$ Fluxes at the neutrino sphere

de Gouvêa, Martinez-Soler, YFPG, Sen, 2205.01102

Towards the DSNB detection — September 18th, 2024

Mass-varying neutrinos

Towards the DSNB detection — September 18th, 2024

Mass-varying neutrinos

Towards the DSNB detection — September 18th, 2024

Conclusions

- The DSNB are the oldest neutrinos within experimental reach!
- If we detect the DNSB, we can test "slow" neutrino properties, such as oscillations spanning Gpc distances, time varying masses.
- Of course, there are important uncertainties that affect the DSNB prediction, so we need to be careful when talking about BSM searches
- Still, there might be "smoking gun" signatures that might not be (very much) affected by those uncertainties
- We are considering the scenario where neutrino masses were bigger at earlier times
- All information is crucial!

Thanks!