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MOTIVATION

Thank you for
this question.
You see
astronomers
have this
problem...

Imagine a few years into the future:
We have observed now the DSNB ...

What interesting
problem in

astrophysics can
you now solve?



We can't detect stars that
silently vanish into black
holes in distant galaxies. It's

like they disappear without a
trace !

Perhaps it's time we use a
different cosmic messenger?

You mean not relying on
light?

Exactly! Let's turn to
neutrinos!




I Neutrinos can reveal the

fraction of black hole-
forming CCSN that photons

Yes

The Diffuse Supernova
Neutrino Background?
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Accretion heating before black hole formation further increases

the neutrino energy.

Shorter emission timescale means more energetic neutrinos are

emitted in a brief period before the emission stops abruptly.

Higher neutrinospheric temperatures result in higher-energy

neutrinos in black hole-forming supernovae.



CALCULATION OF THE DSNB The uncertainty

range is dominated
by insufficiently
constrained cosmic
rate of stellar core-
collapse events.
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THE INFLUENCE OF A

&= FRACTION ON THE

S P E CT RA https://arxiv.org/pdf/2010.04728
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COMBINATION OF
FLUX
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BACKGROUNDS IN
JUNO AND SK e
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BACKGROUNDS IN
JUNO AND SUPERK e
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x Machine Learning DSNB Flux x Machine Learning
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TWO
TESTS

1st Test, the expected events do not include BH events.

2nd Test, the expected events include BH events




FIRST TEST
+ Assumption:

¢ Precise Knowledge of Successful CCSN Rate:
S We have an accurate measurement of the rate of
successful core-collapse supernovae (CCSN) that

form neutron stars, obtained through
astronomical observations.

Testing for Failed CCSN Contribution: This
known rate allows us to investigate whether the
measured Diffuse Supernova Neutrino
Background (DSNB) includes an additional

contribution from failed CCSN that result in black
holes.




FIRST TEST
METHODOLOGY:

Data/Input:
Successful Supernovae (NS)
Failed Supernovae (BH)
Background Events (BKG): Include background neutrino events
relevant to the experiment (e.g., JUNO and SuperK).

Statistical Analysis:
1. For each model, we add a variable fraction [0-200%] of BH
events
2. For each fraction, we compare the
- Expected events: NS events+ background
- Observed events: NS events + scaled BH events + background
3. Likelihood Function: Utilize the Poisson likelihood function to
compute the test statistic —2InA.

Bin-by-Bin Sensitivities: Perform the statistical test for each energy bin given a detector

resolution.
Summed Sensitivities: Sum over all bins to evaluate the overall sensitivity of the experiment to

the failed CCSN contribution.
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CONSIDERING THE FUTURE:

TIMELINE OF BLACK HOLE COMPONENT SENSITIVITY IN THE
DSNB ACROSS EXPERIMENTS

Super-Kamiokande: JUNO: Hyper-Kamiokande:

« Operates from Year O to 7. « Operates from Year 5 onwards. * Operates from Year 7
(2020-2027) (2025-) onwards. (2027-)

« Assumption: SK'stops data- * Contribution: Increases « Assumption: Double SK
taking when HK begins. sensitivity, particularly in specific (Background and Signal).

energy ranges.

4 1 @1




FIRST TEST

SUMMED VS
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WITH BACKGROUNDS
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SECOND
TEST

I

Objective:

*Assess Sensitivity to BH Fraction:
Determine how sensitive we are to
different black hole fractions in the DSNB
by comparing spectra of different
mixtures.

Spectrum Fitting: Evaluate how well (or
poorly) a DSNB spectrum with a specific
neutron star and scaled black hole mixture
can be fitted with a specific model.




SECOND TEST
METHODOLOGY:

Statistical Analysis:
ik,
L]

1. Interpolated Spectra:

For a given BH fractions (fBH), interpolate NS and BH
: fo)
g—AE]

fluxes to generate new spectra

« Expected events: (NS + BH) events from model+
background

« Observed events: (NS + BH) events interpolated
across models for a given BH + background

2. Likelihood Function: Utilize the Poisson likelihood
function to compute the test statistic —2InA.




SECOND TEST
PLOTS:

JUNO: Sensitivity to BH fraction in DSNB | SK: Sensitivity to BH fraction in DSNB
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SECOND TEST

SUMMED VS BINNED
WITH BACKGROUNDS
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THANK YOU FOR YOUR
ATTENTION




TIMELINE WITH SK NOT
HUTTING DOWN
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FI RST TEST 1.Event Rate Calculation:

1. Successful Supernovae (NS): Calculate the expected
M ETH o Do Lo GY: neutrino event rates from successful CCSN.
2. Failed Supernovae (BH): Consider a variable fraction of
failed CCSN contributing to the event rates.
3. Background Events (BKG): Include background neutrino
events relevant to the experiment (e.g., JUNO and SuperK).

2.Statistical Analysis:

1. Observed vs. Expected Events: Compare the expected
events (successful CCSN + background) with the observed
events, which may include a contribution from failed CCSN.

2. Likelihood Function: Utilize the Poisson likelihood function
to assess the probability of observing the data given the
expected rates.

3. Test Statistic: Compute the test statistic —2InA to quantify
the difference between the observed and expected event
rates.

3.Sensitivity Evaluation:
1. Bin-by-Bin Analysis: Perform the statistical test for each energy bin to identify discrepancies.
2. Summed Sensitivities: Sum over all bins to evaluate the overall sensitivity of the experiment

to the failed CCSN contribution.




1.E S Calculation:
SECOND TEST  Obsarved Events (ex)
= S+events_ BH+events BKG
METHODOLOGY: HEeeEE ) -

 Interpolated Spectra (Model Predictions):
For varying BH fractions (fBH), interpolate NS
and BH fluxes to generate new spectra.
Expected Events (ob):
ob=interp_NS+interp_BH+events_BKG

Likelihood Function: Use the Poisson likelihood to
compare the observed events (ex) with the
expected events from the model (ob).

Lo
¢ —
¢ —
. —
. —

3. Interpretation:

Best Fit Identification: —2InA==2>(ex:In(ob)—ob—In(ex!))
The BH fraction corresponding to the
minimum test statistic indicates the best Sensitivity Calculation:
fit to the observed data. 1. Compute the test statistic for each BH
Sensitivity Assessment: fraction.
Analyze how the test statistic varies with 2.Normalize the test statistics by subtracting
different BH fractions to understand the the minimum value to highlight relative

experiment'’s sensitivity. differences.




- JUNO SIGNAL SENSITIVITY

https://arxiv.ora/pdf/2205.08830

Sensitivity
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