Overview of Astrophysical Uncertainties

Ken'ichiro Nakazato (Fuculty of Arts & Science, Kyushu Univ.)

Towards the Detection of Diffuse Supernova Neutrinos: What will we see? What can we learn?

- expanding!
- Cosmological redshift *z* denotes ``time''.

Many generations of stars have exploded!

Cosmic background neutrinos

- Neutrinos emitted by all core-collapse SNe in the causally-reachable universe constitute diffuse background radiation.
- How significant would the DSNB flux be? What determines their flux and spectrum?

What determines BG luminosity? Diffuse SN ν Background ⇓

- luminosity of a source \rightarrow # of v / SN (or BH)
- the source number
- distance to sources star formation history
	- cosmological redshift in the expanding universe
- also, neutrino oscillation parameters

- Cosmological parameters: H_0 , Ω_m , Ω_{Λ}
- Spectrum of supernova neutrinos: $\left(\frac{dN(E_v')}{dE} \right)$ dE'_{ν} \triangleright Property of proto-NS, Fraction of BH formation
- Core-collapse rate: $R_{CC}(z)$ ▶ Star Formation Rate, Initial Mass Function

arXiv:2310.15254

Star Formation Rate

Ekanger et al., PRD **109** (2024), arXiv:2310.15254

• The measured values largely agree within uncertainties.

Neutron stars vs. Black holes

- Neutron stars sustain the self gravity by the nuclear repulsion.
- NS mass sustained by the nuclear repulsion has the upper limit. nuclear repulsion

• BH is formed beyond the upper limit.

Failed supernova neutrinos

- Failed supernova progenitor makes bounce once and recollapse to the black hole.
- Therefore, mass accretion continues until the NS mass exceeds the limit.
	- The larger the maximum mass, the greater the total energy.

Role of Nuclear EOS (BH)

• For BH formation, the maximum mass of remnant NS is determined by nuclear EOS.

Progenitors of BH formation

- Whether the remnant becomes BH or NS depends on the progenitor mass.
	- \rightarrow Fraction of BHs has systematic uncertainty.

"Observing" BH formation

- Disappearance of a supergiant.
- Monitoring survey of them.
	- \rightarrow 2 candidates for BH formation and 8 supernovae

► with
$$
N_{FSN} = 1
$$
 and $N_{SN} = 8$,
 $f_{BH} = 4 - 39\%$

Neustadt et al., arXiv:2104.03318

Table 5. Failed supernova/core-collapse fraction

Notes: Limits are presented at the 90 per cent confidence level.

Neutrinos from BH formation

- Average energy of neutrinos is higher.
	- \triangleright because the mass accretion continues until the BH formation and the PNS is heated.

Neutrino emissions from SN with NS formation and BH formation

Supernova neutrino energetics

• Gravitational binding energy of remnant NS

$$
E \sim \frac{GM_{\rm NS}^2}{R_{\rm NS}} \sim 4 \times 10^{53} \text{ erg} \left(\frac{M_{\rm NS}}{1.4 M_{\odot}}\right)^2 \left(\frac{R_{\rm NS}}{12 \text{ km}}\right)^{-1}
$$

- Energy partition
	- 99%, *O*(10⁵³ erg) : Neutrinos
	- 1%, *O*(10⁵¹ erg) : Kinetic energy of explosion
	- 0.01%, *O*(10⁴⁹ erg) : Photons
- Therefore, the total energy is larger for the larger mass and the smaller radius.

Role of Nuclear EOS (SN)

• For successful SN explosion, the radius of remnant NS is determined by nuclear EOS.

Neutrino light curve

- Impact of NS mass and EOS persists into the late phase (LP).
	- Decay timescale of neutrino light curve is larger for NSs with larger mass and smaller radius.

NS mass distribution

- Observationally, while it has a peak at ~ 1.35 M_{\odot} , heavier
NSs are also exist.
→ NS mass can get higher NSs are also exist.
	- \rightarrow NS mass can get higher through mass accretion.

Antoniadis et al.

adapted from

https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html

Ashida & Nakazato, ApJ **937** (2022), arXiv:2204.04880

• DSNB flux depends on EOS, BH fraction and NS mass distribution. $13.3 < E_v < 31.3$ MeV

Ashida, Nakazato & Tsujimoto, ApJ 953 (2023), arXiv:2305.13543

$$
\frac{\text{Formulation}}{dE_{\nu}} = c \int_0^{z_{\text{max}}} \frac{R_{\text{CC}}(z)}{dE_{\nu}} \left\langle \frac{dN(E_{\nu}')}{dE_{\nu}} \right\rangle \frac{dz}{dE_{\nu} (1+z)^3 + \Omega_{\Lambda}}
$$

• Cosmological parameters: $H_0 = 67.7 \text{ km/s/Mpc}, \Omega_m = 0.31, \Omega_\Lambda = 0.69$

 dE'_{ν}

- Spectrum of supernova neutrinos: $\left(\frac{dN(E_v')}{dE} \right)$
- Core-collapse rate: $R_{CC}(z)$ (from Tsujimoto, 2023)

According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
	- 1. E/S0, Sab galaxies have flatter IMF
	- 2. Progenitors with $\geq 18M_{\odot}$ becomes BH

According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
	- 1. E/S0, Sab galaxies have flatter IMF
	- 2. Progenitors with ≥ 18*M*_⊙ becomes BH
- Initial mass function (IMF): $\psi_{\rm IMF}=\frac{d}{d}$ dM $\propto M^{x-1}$

According to Tsujimoto (2023)

- Galactic chemical evolution implies that: 1. E/S0, Sab galaxies have flatter IMF
	- 2. Progenitors with $\geq 18M_{\odot}$ becomes BH

Nuclear EOS and NS mass

- We adopt 3 types of EOS in this study.
- We assume 1.35M_o NS is formed.

DSNB flux

Ashida, Nakazato & Tsujimoto, ApJ **953** (2023), arXiv:2305.13543

• Comparing with other work, enhancement at low (≲10 MeV) and high (≳30 MeV) energies → due to high *z* and BH sources, respectively

Event spectra of DSNB

R: Galaxy-type dependent IMF, $>18M_{\odot} \Rightarrow$ Black Hole

- G: Galaxy-type dependent IMF, $>18M_{\odot} \Rightarrow$ Neutron Star
- P: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Black Hole
- B: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Neutron Star
- IMF determines total event rate.
- BH/NS determines spectral hardness.

Spectral hardness

- Dividing the neutrinos into two energy bins
	- \triangleright Low-energy bin: 13.3 < E_v < 17.3 MeV
	- \triangleright High-energy bin: 17.3 < E_v < 31.3 MeV

High/Low energy flux

 $>18M_{\odot} \Rightarrow$ Black Hole

- G: Galaxy-type dependent IMF, >18 $M_{\odot} \Rightarrow$ Neutron Star
- P: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Black Hole

B: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Neutron Star

thick symbol: Normal thin symbol: Inverted

- Categorized by IMF and fate of stars >18 M_{\odot}
	- Larger uncertainty than IMF, EOS, and mass hierarchy of neutrinos

Evaluation of signal significance

• Analysis based on Bayes' theorem

 $P(\text{model} | \text{obs}) =$ $P({\rm obs | model}) \times P({\rm model})$ $\sum_{\text{model}} P(\text{obs} | \text{model}) \times P(\text{model})$

- Observables are low $(13.3 < E_v < 17.3$ MeV) and high (17.3 $\lt E_v \lt 31.3$ MeV) energy event numbers: $obs = \{N_{\text{low}}, N_{\text{high}}\}$
- Models with our DSNB + BG vs BG only ▶ BG: non-NCQE, NCQE, accidental, Li9
	- \triangleright Systematic and statistical errors are considered.

Results of signal significance

• Mostly, our signal models can be detected well over BG. SK-IV SK-Gd HK

SK-Gd (10 yr): Posterior probability 70% neutrontag efficiency HK (10 yr): neutron-tag efficiency same with SK-IV

Heatmap of N_{low} *vs* **N_{high}**

• Expected event count over 10 years in HK.

Model discrimination

• Posterior resulting from each input model

G: Galaxy-type dependent IMF, >18 $M_{\odot} \Rightarrow$ Neutron Star

B: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Neutron Star

Nakazato, Akaho, Ashida & Tsujimoto, ApJ in press, arXiv:2406.13276

Another candidate

- Fallback accretion induced BH formation
	- \triangleright Successful SN explosions accompanied by a substantial fallback that leads to a BH formation at later times.

black hole (BH)

black hole (BH)

Why we study them?

• Nucleosynthesis and chemical evolution

GRB

– Hypernovae – Faint supernovae

Why we study them?

- If exist, their impact is large.
	- \rightarrow The binding energy E_{bin} of maximum mass NS is fully converted to neutrinos.
		- E_{bin} = (baryon mass gravitational mass) c^2
- For example (in Togashi EOS):
	- \triangleright canonical mass (1.32M_☉) NS $E_{\text{bin}} = (1.47 - 1.32)M_{\odot}c^2 = 2.7 \times 10^{53}$ erg
		- maximum mass (2.21*M*☉) NS
			- $E_{\text{bin}} = (2.70 2.21)M_{\odot}c^2 = 8.8 \times 10^{53}$ erg

Neutrinos from FB accretion

- Akaho, Nagakura & Foglizzo (2024)
	- \triangleright Steady-state neutrino emission from fallback mass accretion onto PNS (1.41 and 1.98*M*_⊙) \rightarrow M_{q} = 1.98 M_{\odot} corresponds to M_{b} = 2.35 M_{\odot}
- Combining following 3 components:
	- 1. Core-collapse of massive star
	- 2. Cooling of 1.98 M_{\odot} proto-NS cooling
	- 3. Fallback accretion of 0.35 M_{\odot}
		- \triangleright Max. mass of NS is M_h = 2.70 M_\odot (Togashi).
		- \triangleright We evaluate ν spectra emitted from fallback.

According to Akaho+ (2024)

- Fallback produces high-energy v_e and $\bar{v}_e.$ \triangleright Their luminosity gets higher for larger M.
- Emission of v_x is from inside PNS.
	- \triangleright Offsets of v_e and \bar{v}_e luminosities are as well.

Model description

• Neutrino spectra of individual component.

 \triangleright Resultant total emission energy: 8.7×10⁵³ erg

• In this study, we assume that f_{BHSN} to be the fraction of SNe associating fallback induced BH formation among all CCSNe.

Two extremes

- The duration from bounce to BH formation determines the amount of emitted neutrinos.
	- i. Fallback lasts for several tens of seconds.
		- \rightarrow Neutrinos corresponding to the binding energy of the maximum mass NS are released.
	- ii. Short duration similar with failed SNe.
		- \rightarrow The average energy is high but total energy is not exceedingly large.

DSNB flux

Nakazato et al., arXiv:2406.13276

- The impact is larger for NH case
	- ∵ The fallback accretion produce mainly v_e and \bar{v}_e .
- NH, HB06, $f_{\rm BHSN}$ = 0.5 case is close to limits.

Event rate

Nakazato et al., arXiv:2406.13276

• For NH and $f_{\rm BHSN}$ = 0.5 case, event rate in the detectable range (16-30 MeV) gets twice.

Required operation time

• For NH and $f_{\text{BHSN}} = 0.2$ case, required time for 3σ detection at HK is shortened by half.

Conclusions

- The standard model of the DSNB flux, including its uncertainties, is becoming better understood.
- With extreme models considered, it could be as high as current observational limits. With large fraction of failed SNe and BHforming (successful) SNe
- In the coming years, SK-Gd, JUNO, and HK will likely exclude these extreme models.

 Further effort would be required for model discrimination (counterarguments are welcome!)