Overview of Astrophysical Uncertainties

Ken'ichiro Nakazato (Fuculty of Arts & Science, Kyushu Univ.)

Towards the Detection of Diffuse Supernova Neutrinos: What will we see? What can we learn?

- The Universe is expanding!
- Cosmological redshift z denotes ``time''.

Many generations of stars have exploded!

Cosmic background neutrinos

- Neutrinos emitted by all core-collapse SNe in the causally-reachable universe constitute diffuse background radiation.
- How significant would the DSNB flux be? What determines their flux and spectrum?

What determines BG luminosity? ↓ Diffuse SN v Background

- luminosity of a source \rightarrow # of v / SN (or BH)
- the source number γ
- distance to sources
 cosmological redshift in the expanding universe
- also, neutrino oscillation parameters

- Cosmological parameters: H_0 , Ω_m , Ω_Λ
- Spectrum of supernova neutrinos: $\left\langle \frac{dN(E'_{\nu})}{dE'_{\nu}} \right\rangle$ > Property of proto-NS, Fraction of BH formation
- Core-collapse rate: R_{CC}(z)
 ➢ Star Formation Rate, Initial Mass Function

Ekanger et al., PRD **109** (2024), arXiv:2310.15254

Star Formation Rate

Ekanger et al., PRD 109 (2024), arXiv:2310.15254

• The measured values largely agree within uncertainties.

Neutron stars vs. Black holes

- Neutron stars sustain the self gravity by the nuclear repulsion.
- NS mass sustained by the nuclear repulsion has the upper limit.

• BH is formed beyond the upper limit.

Failed supernova neutrinos

- Failed supernova progenitor makes bounce once and recollapse to the black hole.
- Therefore, mass accretion continues until the NS mass exceeds the limit.
 - The larger the maximum mass, the greater the total energy.

Role of Nuclear EOS (BH)

• For BH formation, the maximum mass of remnant NS is determined by nuclear EOS.

Progenitors of BH formation

- Whether the remnant becomes BH or NS depends on the progenitor mass.
 - \rightarrow Fraction of BHs has systematic uncertainty.

"Observing" BH formation

- Disappearance of a supergiant.
- Monitoring survey of them.
 - → 2 candidates for BH formation and 8 supernovae

➤ with
$$N_{\text{FSN}} = 1$$
 and $N_{\text{SN}} = 8$,
$$f_{\text{BH}} = 4 - 39\%$$

Neustadt et al., arXiv:2104.03318

 Table 5. Failed supernova/core-collapse fraction

$N_{\rm FSN}$	Lower limit	Median	Upper limit
2	0.079	0.236	0.470
1	0.037	0.162	0.394
0	_	_	0.226

Notes: Limits are presented at the 90 per cent confidence level.

Neutrinos from BH formation

- Average energy of neutrinos is higher.
 - because the mass accretion continues until the BH formation and the PNS is heated.

Neutrino emissions from SN with NS formation and BH formation

Supernova neutrino energetics

Gravitational binding energy of remnant NS

$$E \sim \frac{GM_{\rm NS}^2}{R_{\rm NS}} \sim \frac{4 \times 10^{53} \,\mathrm{erg} \left(\frac{M_{\rm NS}}{1.4M_{\odot}}\right)^2 \left(\frac{R_{\rm NS}}{12 \,\mathrm{km}}\right)^{-1}$$

- Energy partition
 - 99%, O(10⁵³ erg) : Neutrinos
 - -1%, O(10⁵¹ erg) : Kinetic energy of explosion
 - 0.01%, O(10⁴⁹ erg) : Photons
- Therefore, the total energy is larger for the larger mass and the smaller radius.

Role of Nuclear EOS (SN)

 For successful SN explosion, the radius of remnant NS is determined by nuclear EOS.

Neutrino light curve

- Impact of NS mass and EOS persists into the late phase (LP).
 - Decay timescale of neutrino light curve is larger for NSs with larger mass and smaller radius.

NS mass distribution

- Observationally, while it has a peak at ~ 1.35M_☉, heavier NSs are also exist.
 - → NS mass can get higher through mass accretion.

Antoniadis et al.

adapted from

https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html

Ashida & Nakazato, ApJ **937** (2022), arXiv:2204.04880

• DSNB flux depends on EOS, BH fraction and NS mass distribution. $13.3 < E_{\nu} < 31.3$ MeV

Ashida, Nakazato & Tsujimoto, ApJ 953 (2023), arXiv:2305.13543

- Cosmological parameters: $H_0 = 67.7 \text{ km/s/Mpc}, \Omega_m = 0.31, \Omega_\Lambda = 0.69$
- Spectrum of supernova neutrinos: $\left\langle \frac{dN(E_{\nu}')}{dE'} \right\rangle$
- Core-collapse rate: $R_{CC}(z)$ (from Tsujimoto, 2023)

According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
 - 1. E/S0, Sab galaxies have flatter IMF
 - 2. Progenitors with $\geq 18M_{\odot}$ becomes BH

According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
 - 1. E/S0, Sab galaxies have flatter IMF
 - 2. Progenitors with $\geq 18M_{\odot}$ becomes BH
- Initial mass function (IMF): $\psi_{IMF} = \frac{dN}{dM} \propto M^{x-1}$

According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
 - 1. E/S0, Sab galaxies have flatter IMF
 - 2. Progenitors with $\geq 18M_{\odot}$ becomes BH

Nuclear EOS and NS mass

- We adopt 3 types of EOS in this study.
- We assume $1.35M_{\odot}$ NS is formed.

DSNB flux

Ashida, Nakazato & Tsujimoto, ApJ **953** (2023), arXiv:2305.13543

 Comparing with other work, enhancement at low (≤10 MeV) and high (≥30 MeV) energies
 → due to high z and BH sources, respectively

Event spectra of DSNB

R: Galaxy-type dependent IMF, $>18M_{\odot} \Rightarrow$ Black Hole

- G: Galaxy-type dependent IMF, > $18M_{\odot} \Rightarrow$ Neutron Star
- P: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Black Hole
- B: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Neutron Star
- IMF determines total event rate.
- BH/NS determines spectral hardness.

Spectral hardness

- Dividing the neutrinos into two energy bins
 - \succ Low-energy bin: 13.3 < E_{ν} < 17.3 MeV
 - > High-energy bin: $17.3 < E_{\nu} < 31.3$ MeV

High/Low energy flux

R: Galaxy-type dependent IMF, $>18M_{\odot} \Rightarrow$ Black Hole

- G: Galaxy-type dependent IMF, > $18M_{\odot} \Rightarrow$ Neutron Star
- P: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Black Hole

B: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Neutron Star

thick symbol: Normal thin symbol: Inverted

• Categorized by IMF and fate of stars >18 M_{\odot}

 Larger uncertainty than IMF, EOS, and mass hierarchy of neutrinos

Evaluation of signal significance

• Analysis based on Bayes' theorem

 $P(\text{model}|\text{obs}) = \frac{P(\text{obs}|\text{model}) \times P(\text{model})}{\sum_{\text{model}} P(\text{obs}|\text{model}) \times P(\text{model})}$

- Observables are low (13.3 < E_{ν} < 17.3 MeV) and high (17.3 < E_{ν} < 31.3 MeV) energy event numbers: obs = { N_{low} , N_{high} }
- Models with our DSNB + BG vs BG only
 > BG: non-NCQE, NCQE, accidental, Li9
 - Systematic and statistical errors are considered.

Results of signal significance

 Mostly, our signal models can be detected well over BG.
 * SK-IV SK-Gd HK

SK-Gd (10 yr): 70% neutrontag efficiency HK (10 yr): neutron-tag efficiency same with SK-IV

Heatmap of N_{low} vs N_{high}

• Expected event count over 10 years in HK.

Model discrimination

Posterior resulting from each input model

 $>18M_{\odot} \Rightarrow$ Black Hole

P: Universal (Salpeter) IMF, > $18M_{\odot} \Rightarrow$ Black Hole

G: Galaxy-type dependent IMF, > $18M_{\odot} \Rightarrow$ Neutron Star B: Universal (Salpeter) IMF, $>18M_{\odot} \Rightarrow$ Neutron Star

Nakazato, Akaho, Ashida & Tsujimoto, ApJ in press, arXiv:2406.13276

Another candidate

- Fallback accretion induced BH formation
 - Successful SN explosions accompanied by a substantial fallback that leads to a BH formation at later times.

black hole (BH)

black hole (BH)

Why we study them?

Nucleosynthesis and chemical evolution

GRB

HypernovaeFaint supernovae

Why we study them?

- If exist, their impact is large.
 - \rightarrow The binding energy $E_{\rm bin}$ of maximum mass NS is fully converted to neutrinos.
 - $> E_{bin}$ = (baryon mass gravitational mass) c^2
- For example (in Togashi EOS):
 - > canonical mass $(1.32M_{\odot})$ NS $E_{\text{bin}} = (1.47 - 1.32)M_{\odot}c^2 = 2.7 \times 10^{53}$ erg
 - \succ maximum mass (2.21 M_{\odot}) NS

$$E_{\rm bin} = (2.70 - 2.21)M_{\odot}c^2 = 8.8 \times 10^{53} \,\rm erg$$

Neutrinos from FB accretion

- Akaho, Nagakura & Foglizzo (2024)
 - > Steady-state neutrino emission from fallback mass accretion onto PNS (1.41 and $1.98M_{\odot}$)

 $\rightarrow M_{\rm g}$ = 1.98 M_{\odot} corresponds to $M_{\rm b}$ = 2.35 M_{\odot}

- Combining following 3 components:
 - 1. Core-collapse of massive star
 - 2. Cooling of $1.98M_{\odot}$ proto-NS cooling
 - 3. Fallback accretion of $0.35M_{\odot}$
 - > Max. mass of NS is $M_{\rm b} = 2.70 M_{\odot}$ (Togashi).
 - > We evaluate v spectra emitted from fallback.

According to Akaho+ (2024)

- Fallback produces high-energy v_e and v
 _e.
 ➤ Their luminosity gets higher for larger M.
- Emission of v_{χ} is from inside PNS.
 - > Offsets of v_e and \bar{v}_e luminosities are as well.

Model description

• Neutrino spectra of individual component.

Resultant total emission energy: 8.7×10⁵³ erg

 In this study, we assume that f_{BHSN} to be the fraction of SNe associating fallback induced BH formation among all CCSNe.

Two extremes

- The duration from bounce to BH formation determines the amount of emitted neutrinos.
 - i. Fallback lasts for several tens of seconds.
 - → Neutrinos corresponding to the binding energy of the maximum mass NS are released.
 - ii. Short duration similar with failed SNe.

→ The average energy is high but total energy is not exceedingly large.

			$\langle E_{\nu_e} \rangle$	$\langle E_{\bar{\nu}_e} \rangle$	$\langle E_{\nu_x} \rangle$	$E_{\nu_e,\mathrm{tot}}$	$E_{\bar{\nu}_e,\mathrm{tot}}$	$E_{\nu_x,\mathrm{tot}}$
Model	explosion	remnant	(MeV)			$(10^{52} { m erg})$		
Ordinary core-collapse SN	successful	NS	9.2	10.9	11.8	4.47	4.07	4.37
BH-forming SN, (i) fallback induced	successful	BH	11.8	13.6	10.9	19.48	18.50	12.07
BH-forming SN, (ii) prompt	successful	BH	16.1	20.4	23.4	6.85	5.33	2.89
Failed SN	failed	BH	16.1	20.4	23.4	6.85	5.33	2.89

<u>DSNB flux</u>

Nakazato et al., arXiv:2406.13276

- The impact is larger for NH case
 - The fallback accretion produce mainly v_e and \bar{v}_e .
- NH, HB06, f_{BHSN} = 0.5 case is close to limits.

Event rate

Nakazato et al., arXiv:2406.13276

• For NH and $f_{\rm BHSN}$ = 0.5 case, event rate in the detectable range (16-30 MeV) gets twice.

Required operation time

• For NH and $f_{\rm BHSN}$ = 0.2 case, required time for 3 σ detection at HK is shortened by half.

<u>Conclusions</u>

- The standard model of the DSNB flux, including its uncertainties, is becoming better understood.
- With extreme models considered, it could be as high as current observational limits.
 With large fraction of failed SNe and BHforming (successful) SNe
- In the coming years, SK-Gd, JUNO, and HK will likely exclude these extreme models.
 - Further effort would be required for model discrimination (counterarguments are welcome!)