Prospects of JUNO

Jie Cheng (程捷) North China Electric Power University on behalf of the JUNO collaboration 2024/09/16

Towards the detection of Diffuse Supernova Neutrinos: What will we see? What can we learn? September 16 – 20, 2024

© Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of T

JUNO Experiment

Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment currently under construction in South China.

DSNB 2024

JUNO Experiment

 Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment currently under construction in South China.

- Many other physics programs
 - Solar neutrinos
 - Atmospheric neutrinos
 - Supernova burst neutrinos
 - Diffuse supernova neutrino background (This talk)
 - Geo-neutrinos
 - Exotic neutrinos
 - Nucleon decay

JUNO Collaboration

Collaboration established in 2014

♦ Now more than 700 collaborators from 74 institutions

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	Tsinghua U.	Germany	U. Tuebingen
Belgium	Universite libre de Bruxelles	China	UCAS	Italy	INFN Catania
Brazil	PUC	China	USTC	Italy	INFN di Frascati
Brazil	UEL	China	U. of South China	Italy	INFN-Ferrara
Chile	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China 🥂	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China 📜	Xiamen University	Italy	INFN-Perugia
China	CAGS	China 🦚	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China 🧾	NUDT	Pakistan	PINSTECH (PAEC)
China	CIAE	China	CUG-Beijing	Russia	INR Moscow
China	DGUT	China	ECUT-Nanchang City	Russia	JINR
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Liverpool
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U. 🛛 🍆	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	GSI	USA	UC Irvine
China	SYSU	Germany	U. Mainz		

----Collaborators ----Institutions

The 24th JUNO collaboration meeting

JUNO Site

JUNO Detector Requirements

Main requirements:

➔ Unprecedented liquid scintillator (LS) neutrino experiment

DSNB 2024

JUNO Detector

Central detector

- 17612 20" PMTs & 25600 3" PMTs
- Acrylic Vessel diameter 35.4 m

Veto detector

- Top tracker
- 35 kt ultra pure water
- 2400 20" PMTs

Central Detector: Stainless Steel Structure

• A D=40.1 m stainless steel structure supports the acrylic vessel via 590 connecting bars.

Central Detector: Acrylic Vessel

Contains 20 kton of LS:

- ✓ 263 Acrylic panels: ~8m x 3m x 12 cm
- ✓ Inner diameter: ~35.40 m
- ✓ Light transparency > 96%
- ✓ Radiopurity: U/Th/K < 1 ppt

Connection bar installation

Jie Cheng (程捷)

DSNB 2024

Muon Veto System

- > ~650 m rock overburden (1800 m.w.e.) → R_{μ} = 4 Hz in LS, $\langle E_{\mu} \rangle$ = 207 GeV
- ✓ About 127 ⁹Li and 40 ⁸He isotopes, but 57 reactor neutrinos per day

35 kton of ultrapure water serving as passive shield and water Cherenkov detector.

 ✓ 2400 20-inch PMTs, detection efficiency of cosmic muons larger than 99.5%

Plastic scintillator from the OPERA

- ✓ About 50% coverage on the top, three layers to reduce accidental coincidence
- ✓ All scintillator panels arrived on site in 2019

✓ One effective veto strategy keeps 47.1 reactor neutrinos but only 0.8 residual Li9/He8 background

Liquid Scintillator (LS)

- > 20 kt liquid scintillator: LAB based, PPO as fluorescence, bis-MSB as wavelength shifter
- $\checkmark\,$ 20 m attenuation length at 430 nm
- ✓ required radioactivity 10^{-15} g/g for reactor neutrinos and 10^{-17} g/g for solar neutrinos
- $\checkmark\,$ full system commissioning started in April 2023

Photomultiplier Tubes (PMTs)

- Synergetic 20-inch (L) and 3-inch (S) PMT systems to ensure energy resolution and control systematics
- $\checkmark\,$ All PMTs produced, tested, and instrumented with waterproof potting.
- ✓ More than 7000 LPMTs and 9000 SPMTs installed and tested OK!

		LPMT (20	-inch)	SPMT (3-inch)
		Hamamatsu	NNVT	HZC
Quantity		5000	15012	25600
Charge Collection	n	Dynode	MCP	Dynode
Photon Detection Efficiency		28.5%	30.1%	25%
Mean Dark Count Rate	Bare	15.3	49.3	0.5
[kHz]	Potted	17.0	31.2	0.5
Transit Time Spread (σ) [ns]		1.3	7.0	1.6
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs
Coverage		75%		3%
Reference		Eur. Phys. J. C 82 (2022) 12, 1168		NIM.A 1005 (2021) 165347

12.6k NNVT PMTs with the highest PDE are selected for light collection from LS and the rest are used in the Water Cherenkov detector.

Electronics

Underwater electronics to improve signal-to-noise ratio for better energy resolution

■ LPMT electronics: 20012 channels

- → Dynamic range: 1-4000 PE
- → Noise: <10% @1 PE
- → Resolution: <10%@1 PE, <1%@100 PE
- 1 GHz FADC (14 bit) in an underwater box (3 ch./box), connected to PMTs by water proof connectors
 Failure rate: < 0.5% in 6 years

Electronics assembly and tests done Installation is ongoing

- SPMT electronics: 25600 channels
- 200 underwater boxes, each for 128 PMTs read by ASIC Battery Cards (ABC), each with 8 CatiROC chips
- Only time/charge readout

Calibration

> 1D,2D,3D scan systems with multiple calibration sources

✓ Calibrate energy scale to better than 1% using gamma peaks and cosmogenic ¹²B beta spectrum

All system ready for installation

Radiopurity Control

JHEP 11 (2021) 102

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt → 1 ppt
Metal in node	0.087	+1.0	Copper → SS
PMT glass	0.33	+2.47	Schott → NNVT/Ham
Rock	0.98	-0.85	3.2 m → 4 m
Radon in water	1.31	-1.25	200 mBq/m ³ → 10 mBq/m ³
Other	0	+0.52	Add PMT readout, calibration sys.
Total	8.5	-1.3	

Radiopurity control on raw material:

- ✓ Careful material screening
- ✓ Meticulous Monte Carlo Simulation
- ✓ Accurate detector production handling

- ➢ Reduced by 15% compared to the design.
- Good enough for reactor neutrinos

Liquid Scintillator Filling

- ✓ Recirculation is impossible at JUNO due to its large size
- \rightarrow Target radiopurity needs to be obtained from the beginning
- ✓ Strategies:
- **1.** Leakage (single component < 10^{-6} mbar·L/s)
- 2. Cleaning vessel before filling
- 3. Clean environment
- 4. Surface treatment of the acrylic vessel
- 5. LS filling strategy

Expected Performance

Background in LS can reach U/Th/K < 10^{-15} g/g for reactor ν , 10^{-17} g/g is feasible for solar ν and future $0\nu\beta\beta$ decays

➢From measured PMT, LS and acrylic properties, the energy resolution will be < 3%@1 MeV, based on full simulation, calibration and reconstruction</p>

Changes	Light yield in detector center [PEs/MeV]		Energy resolution @ 1 MeV	Reference
Design	1345		3.0%	JHEP03 (2021) 004
20-inch PMT PDE (27%→30.1%)	↑ 11%			EPJC 82 (2022) 12, 1168
New Center Detector geometries	↑ 3%	1665	2.9%	-
More realistic optical model	↑ 8%			EPJC 82 329 (2022)

• Scintillation quenching effect

• LS Birks constant from table-top measurements

Cherenkov radiation

- Cherenkov yield factor (refractive index & re-emission probability) is reconstrained with Daya Bay LS non-linearity
- Detector uniformity and reconstruction
- Annihilation-induced γ's
- Dark noise

Neutrinos from Supernova

- only neutrinos produced by SN1987A have been observed
- **Supernova neutrinos**: studying the fate of stars, the evolution of the cosmos, element nucleosynthesis, the nature of neutrinos, etc.
- Two complementary methods:
 - **Neutrinos from core-collapse supernova (CCSN) bursts** within or near the Milky Way
 - High statistics (1-3 / century)
 - Diffuse supernova neutrino background (DSNB): neutrinos from supernovae that have either exploded successfully or failed to explode in the cosmos 😃 , low event rate (e.g., ~2-4 IBD events / year @ JUNO) 😒

Prospect on Detecting DSNB

- ✓ DSNB is yet to be observed
- Expected to achieve the first observation using large LS and Water detectors

- holds the important information on the average core-collapse SN neutrino spectrum, the cosmic star-formation rate and the fraction of failed black-hole forming SNe.
- The probability of detecting the DSNB relies on
 - The size of detector (JUNO, SuperK-Gd, Hyper-K, DUNE, THEIA)
 - Background suppression

DSNB Signal Prediction

• DSNB prompt energy spectrum:

DSNB Signal Prediction

DSNB Signal Prediction

DSNB 2024

Detector capabilities

DSNB Observation Window

- DSNB observation window [12, 30] MeV, main residual backgrounds:
 - Fast neutron background
 - Atmospheric neutrino neutral current (NC) background

Fast Neutron Background

- Detection efficiencies of cosmic muons in JUNO LS and Water detectors: ~100% and 99.5%, respectively
- Fast neutrons: from muons that only pass through the rock surrounding the detector
 - Because of water shielding, most of fast neutrons distributed at equator and top of the LS
 - approximately flat visible energy spectrum

Atm-v NC Background

NC interactions of atm. neutrino with ¹²C in LS: the most significant background source in the DSNB study

Atm-v Flux

- HKKMS atmospheric neutrino flux model for JUNO
- Flux calculation developed from 10 MeV to 100 GeV

Methodology for Atm- ν and ¹²C Interaction Prediction

Cheng et al, Phys. Rev. D 103. 05001 (2021)

Methodology for Atm- ν and ¹²C Interaction Prediction

Neutrino Generator Models

Summary of the main features of models used in early and recent stages

Models	Generator	$M_{ m A}$ for Q	E Nuclear	Inclusion	FSI
	(version)	[GeV]	model	of $2p2h$	model
	Models used in	preceding	g papers		
Model-G1 (G)	GENIE $(2.12.0)$	0.99	BRRFG	×	hA
Model-N1	NuWro (17.10)	1.03	LFG	×	Ref. [43]
Model-N2	NuWro (17.10)	0.99	LFG	×	Ref. [43]
Model-N3	NuWro (17.10)	1.35	LFG	×	Ref. [43]
Model-N4	NuWro (17.10)	0.99	LFG	\checkmark (TEM)	Ref. [43]
Model-N5	NuWro (17.10)	0.99	SF	×	Ref. [43]
	New models	s added ir	n this work		
Model-G2	GENIE $(3.0.6)$	0.96	LFG	\checkmark (EP)	hN2018
Model-G3	GENIE $(3.0.6)$	0.96	LFG	\checkmark (EP)	hA2018
Model-G4	GENIE $(3.0.6)$	0.96	BRRFG	\checkmark (EP)	hN2018
Model-N6	NuWro (19.02)	1.03	LFG	×	Ref. [43]
Model-N7	NuWro (19.02)	1.03	SF	×	Ref. [43]

BRRFG: relativistic Fermi gas model with "Bodek-Ritchie" modifications

LFG: local Fermi gas model

SF: spectral function

0.99 GeV: deuterium measurements

1.35 GeV: MiniBooNE neutrino QE data

TEM: Transverse Enhancement model for *2p2h*

EP: Empirical model for *2p2h*

Ref.[43]: Phys. Rev. D 79, 053003 (2009)

Neutrino Generator Models

Summary of the main features of models used in early and recent stages

Models	Generator	$M_{ m A}$ for C	E Nuclear	Inclusion	FSI
	(version)	[GeV]	model	of $2p2h$	model
	Models used in	precedin	g papers		
Model-G1 (G)	GENIE $(2.12.0)$	0.99	BRRFG	×	hA
Model-N1	NuWro (17.10)	1.03	\mathbf{LFG}	×	Ref. [43]
Model-N2	NuWro (17.10)	0.99	\mathbf{LFG}	×	Ref. [43]
Model-N3	NuWro (17.10)	1.35	LFG	×	Ref. [43]
Model-N4	NuWro (17.10)	0.99	LFG	\checkmark (TEM)	Ref. [43]
Model-N5	NuWro (17.10)	0.99	\mathbf{SF}	×	Ref. [43]
	New model	s added i	n this work		
Model-G2	GENIE $(3.0.6)$	0.96	\mathbf{LFG}	\checkmark (EP)	hN2018
Model-G3	GENIE (3.0.6)	0.96	LFG	\checkmark (EP)	hA2018
Model-G4	GENIE $(3.0.6)$	0.96	BRRFG	$\checkmark(\mathrm{EP})$	hN2018
Model-N6	NuWro (19.02)	1.03	LFG	×	Ref. [43]
Model-N7	NuWro (19.02)	1.03	\mathbf{SF}	×	Ref. [43]

Validated with MINERvA data

https://zenodo.org/records/6774990

Investigate the impact of different generators, nuclear model, FSI models on the prediction

All processes are included, new models primarily focus on variations related to QE and do not fully explore variations related to RES, COH, and DIS

Plan to include GiBUU and NEUT in our calculation Jie Cheng (程捷)

DSNB 2024

TALYS-based Deexcitation Model of Residual Nucleus

1. Simple shell model \rightarrow Status of the residual nuclei

Phys. Rev. D 67 (2003) 076007

- All residual nuclei with A>5 have been considered
- Go beyond simple shell model
 - \checkmark considering the correlation between P shell (P_{1/2} and P_{3/2})
 - $\checkmark\,$ will be adopted in our calculation

2.	TALYS \rightarrow Simulate residual nucleus at certain high excited
en	ergy

Reaction channels	Fraction [%]	Reaction channels	Fraction [%]
$^{11}\mathrm{C}^* \to \gamma +$		$^{11}\mathrm{B}^* \to \gamma +$	
$(E^*=23 \text{ MeV}: 1/3)$		$(E^*=23 \text{ MeV}: 1/3)$	
$p + d + {}^{8}\text{Be}$	20	$n + {}^{10}B$	23
$p + \alpha + {}^{6}\text{Li}$	20	$n + \alpha + {}^{6}\text{Li}$	17
$p + {}^{10}B$	17	$n + d + {}^8\text{Be}$	15
$2p + {}^{9}\text{Be}$	14	$d + {}^{9}\text{Be}$	14
$d + {}^9\mathrm{B}$	11	$n + p + {}^9\text{Be}$	11
$n + {}^{10}C$	5	$p + {}^{10}\text{Be}$	8
$n + p + {}^{9}B$	5	$\alpha + {}^{7}\text{Li}$	6
$\alpha + {}^{7}\text{Be}$	4	$t + {}^{8}\text{Be}$	4
$^{3}\mathrm{He}+^{8}\mathrm{Be}$	3	$2n + {}^{9}B$	2
others	1	others	<1

Impact of Deexcitation on Final-state Production

Jie Cheng (程捷)

Geant4-based Detector Simulation

- □ GEANT4 (4.10.p02)→ simulate the propagation of final-state particles in LS
- □ Hadronic models: QGSP_BERT_HP
- Considering decay processes of unstable isotopes after deexcitation stage in detector simulation
 - → Important for *in-situ* measurement
- Secondary interactions (SI): final-state particles produced by a primary interaction, subsequently interact within the LS
- □ Neutron tagging takes place after the SI
- Tagged neutrons \neq final-state neutrons

JUNO

IBD-like NC Background

- Energy spectra of IBD-like events. Average of six model calculations as the prediction and combination of the flux uncertainty and model variations as the total uncertainty

 (3.0 ± 0.5) kt⁻¹ yr⁻¹ within [12, 30] MeV
- **Exclusive final-state information of these IBD-like events**
 - Important for in situ measurement, PSD and TC cut

In situ Measurement

DSNB 2024

Cosmogenic ¹¹C

Radioactivity

 10^{3}

(a)

 10^{4}

(b)

(c)

Phys. Rev. D 103 (2021) 5, 053002

 10^{2}

 $\Delta t [s]$

10

+ MC data: 200 kt-vr

NC¹¹C

NC¹⁰C

Events [s⁻¹]

15

evaluation of the associated uncertainties

3.5

Uncertainty Estimation via In situ Measurement

Phys. Rev. D 103 (2021) 5, 053002

> The uncertainty for the NC background for DSNB is evaluated

Future JUNO will be able to make a unique contribution to the worldwide dataset to improve the prediction of NC interaction on ¹²C
Reproduce NC background uncertainty from the

summary in Phys.Rev.D 103 (2021) 5, 053002

The bands are obtained by assuming different levels of natural radioactivity and cosmogenic ¹¹C in the accidental background

NC background 35% 25% 15% uncertainty

Within 10 years JUNO data, NC background rate can be constrained on 15% level

Pulse Shape Discrimination (PSD)

- > The S/B ratio in DSNB study is about 0.05 without cuts
- Pulse shape discrimination (PSD): a powerful tool to significantly suppress atmospheric NC backgrounds and fast neutron backgrounds
 - \rightarrow Because the component of the prompt signal: different
- In LS, fluorescence time profile: characterized by typical decay time constants
- Probability of photon emission time: weighted sums of exponential functions of several components
- Time profiles of different kinds of particles: different
 - ➔ Foundation of the PSD technique

JUNO, JCAP 10 (2022) 033

Averaged photon emission time (PET)

PSD Efficiency & Uncertainty Estimation

JUNO, JCAP 10 (2022) 033

- BDT (baseline) and neural network (alternative) based methods are developed (instead of simple tail-to-total method)
- ✓ The PSD efficiency for DSNB @ 1% bkg residual
 - ✓ 84% (FV1)
 - ✓ 77% (FV2)
- Signal PSD efficiency Compared to 50% DSNB PSD \checkmark efficiency in 2016 analysis [J. Phys. G43:030401(2016)
- Energy dependent PSD efficiency \checkmark is used for the first time

1.0inefficiency efficienc inefficier 0.80.8Signal PSD PSD **3ackground PSD** 0.60.6FV1 FV2 **3ackground** DSNB DSNB 0.4Atm-v NC (w/ ¹¹C) - Atm-v NC (w/ ¹¹C) --- Atm-v NC (w/o ¹¹C) --- Atm-v NC (w/o ¹¹C) 0.2 0.020.2 0.020.0 0.0 22 24 26 28 30 22 24 26 28 30 12 14 18 20 12 16 20 16 14 18 Prompt energy [MeV] Prompt energy [MeV]

Energy-dependent PSD efficiency: optimized

PSD uncertainty estimation via possible similar data samples

- **Spallation neutrons**
- Neutron calibration sources for the low energy range
- The muon capture and Michael electrons

More details for PSD study, refers to Xiaojie's talk

Exposure	1-3 years	4-9 years	10-20 years
PSD cut uncertainty	30%	20%	10%

Triple-coincidence (TC) Cut

• TC cut

- ⇒ Relies on the three-fold signature of the ¹¹C NC channel
 - Prompt signal: a fast neutron recoil
 - Delayed signal: neutron captured on hydrogen
 - Delayed decay signal from unstable ¹¹C nucleus
- \Rightarrow Apply time and distance ΔR_{pd} cuts between the third delayed signal and the prompt one
- Accidental background (mimicking a third signal)
 - ✓ cosmogenic ¹¹C

natural radioactivity
 Due to high level of natural
 radioactivity background in FV2, TC
 cut cannot be applied

Study impact of the different TC cuts on sensitivity to DSNB select optimal cut setting

Jie Cheng (程捷)

DSNB 2024

38

Final Rates and Spectra of Signal and Backgrounds

Rate (/(10 yrs))		w/o cuts	w/ cuts
FV1	dsnb	20.8	15.6
	bkg	459.4	3.5
	S/B	0.05	4.5
FV2	dsnb	5.0	3.6
	bkg	136.5	1.9
	S/B	0.04	2.0

Highlights on background suppression

- ✓ Muon veto
- ✓ PSD technique
- ✓ TC (¹¹C delayed decay)

Improvements compared to 2016 analysis J. Phys. G43:030401(2016):

- ✓ Background evaluation: 0.7 per year → 0.54 per year
- ✓ **PSD:** signal efficiency $50\% \rightarrow 80\%$ (1% residual background)
- Realistic DSNB signal model: non-zero fraction of failed Supernova

S/B improved from 2 to 3.5

Model Dependent DSNB Sensitivity

- δ_{bkg}: combination of NC background uncertainty (estimated from in situ measurement) and PSD uncertainty (using spallation neutron sample) as a function of the exposure
- With the nominal model (black solid curve): 3σ (3yrs) and 6σ (10yrs)

- ⇒ DSNB sensitivity as a functions of three model parameters with 10 years of JUNO data
- The black stars show the locations of nominal model: better than 5-σ discovery potential

DSNB Sensitivity: Exclusion Limits

JUNO, JCAP 10 (2022) 033

If no positive observation, JUNO can set the world-leading best limits of DSNB flux

Improvement compare to JUNO (2015)

- 1. Background evaluation and PSD improvement
- 2. Realistic DSNB signal model

Summary and Prospects

JUNO is designed to measure the Neutrino Mass Ordering via reactor neutrinos, is also sensitivity to many other neutrino sources (including solar neutrinos, atmospheric neutrinos, supernova neutrinos, geo-neutrinos)

20 kton LS, 3% @ 1 MeV energy resolution, advance detector technology

The Construction is proceeding well: first data in 2025

Promising prospects for detecting the DSNB

For the nominal model of DSNB, the DSNB discovery potential can be achieved 3σ (3yrs) and 6σ (10yrs)

Significantly improve the limits of the DSNB parameter space

backup

Electronics

Underwater electronics to improve signal-to-noise ratio for better energy resolution

3 20-inch PMTs connected to one underwater box

1 GHz waveform digitization, expected loss rate < 0.5% in 6 years

128 3-inch PMTs connected to one underwater box

Electronics assembly and tests done

Front-End board UnderWater Box