Status and prospects of DSNB modeling

MAX PLANCK INSTITUTE FOR ASTROPHYSICS

Daniel Kresse, 2024-09-17

<u>Collaborators:</u> Thomas Janka, Thomas Ertl, Malte Heinlein, Robert Bollig, Tobias Melson, Alexander Summa, et al.

- core-collapse of massive stars (above $\sim 9 \ {\rm M}_{\odot})$ \rightarrow formation of a compact remnant (NS/BH)
- ~ 99 % of released gravitational binding energy (several 10^{53} erg) radiated in the form of neutrinos and antineutrinos in an ~ $\mathcal{O}(10 \text{ s})$ long signal \rightarrow **SN 1987A**
- waiting for next galactic/nearby SN with high expected event statistics (e.g. Super-K, IceCube)
- however: (1.9 ± 1.1) CCSNe per century in the Milky Way (Diehl et al. 2006)

Earth is exposed to a bath of relic neutrinos from all past CCSNe: diffuse supernova neutrino background (DSNB)

"guaranteed" (isotropic and stationary) signal of MeV (anti-)neutrinos: expected flux of electron antineutrinos: \sim (20-50) cm⁻² s⁻¹

DSNB Detection Prospects

• upper flux limits (e.g., Abe et al. 2021) close to theoretical predictions \rightarrow excellent discovery prospects within next decade (e.g., SK-Gd, JUNO)

DSNB Detection Prospects (Super-K flux limit)

• $\Phi(E > 17.3 \text{ MeV}) \lesssim 2.7 \text{ cm}^{-2} \text{s}^{-1}$

- $\circ \sim$ a factor of 2 above theoretical predictions
- some models already disfavored / excluded

Abe et al. 2021, arXiv:2109.11174

- upper flux limits (e.g., Abe et al. 2021) close to theoretical predictions
 → excellent discovery prospects within next decade (e.g., SK-Gd, JUNO)
- theoretical models will be needed to interpret future measurements

DSNB Detection Prospects (Super-K flux limit)

- upper flux limits (e.g., Abe et al. 2021) close to theoretical predictions \rightarrow excellent discovery prospects within next decade (e.g., SK-Gd, JUNO)
- theoretical models will be needed to interpret future measurements

Core-collapse Supernovae in a Nutshell

- Onion-shell-like structure
- Stellar radius: ~10⁸-10⁹ km
- Iron (Fe) core: ~10³ km

Core-collapse Supernovae in a Nutshell

- Onion-shell-like structure
- Stellar radius: ~10⁸-10⁹ km
- Iron (Fe) core: ~10³ km
- Fe core collapses to a Proto-Neutron Star (PNS)
- Core bounce launches a shock wave (stagnates)

Core-collapse Supernovae in a Nutshell

- Onion-shell-like structure
- Stellar radius: ~10⁸-10⁹ km
- Iron (Fe) core: ~10³ km
- Fe core collapses to a Proto-Neutron Star (PNS)
- Core bounce launches a shock wave (stagnates)

 Shock revival by neutrino energy deposition

Neutrino-driven Explosion Mechanism

- Gravitational binding energy of the collapsed Fe core (~3–4 x 10⁵³ erg) transiently stored in a hot and inflated PNS
- PNS contracts and cools via neutrino emission over ~10 s
- ~1% of neutrinos reabsorbed (in "gain layer" / heating layer)
- Shock revival (aided by fluid instabilities: convection & SASI)

M

Neutrino Emission Across the "Landscape" of Progenitors

Neutrino Emission Across the "Landscape" of Progenitors

DSNB modeling

- (1) SN neutrino number spectrum [MeV⁻¹], time-integrated and IMF-folded; cosmological redshift: E' = (1 + z)E
- (2) Cosmic core-collapse rate density $[yr^{-1}Mpc^{-3}]$; ~ SFH
- (3) Cosmological time integral (Λ CDM)

DSNB modeling

Long history of theoretical modeling:

e.g., Krauss+84, Dar 85, Hartmann+Woosley 97, Ando+Sato 03, Strigari+04/05, Hopkins+Beacom 06, Lunardini 06/07/09, Totani+09, Lunardini+Tamborra 12, Nakazato+13/15, Mathews+14, Hidaka+16/18, Horiuchi+18/21, Møller+18, Tabrizi+Horiuchi 21, Ashida+Nakazato 22/23, Suliga+22, Ekanger+22/24, Ziegler+22, Anandagoda+23, ... (**non-exhaustive!!**)

<u>Reviews:</u> Ando & Sato (2004), Beacom (2010), Lunardini (2016), Ando et al. (2023)

(1) IMF-averaged time-integrated neutrino source spectrum

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} = c \int \frac{\mathrm{d}N_{\mathrm{CC}}}{\mathrm{d}E'} \frac{\mathrm{d}E'}{\mathrm{d}E} R_{\mathrm{CC}}(z) \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \mathrm{d}z$$

→ many different approaches
 & degrees of sophistication

- thermal spectrum (e.g., Horiuchi+09)
- pinched/anti-pinched α spectrum (e.g, Keil+03, Lunardini 07)
- numerical spectra from exemplary CCSN simulations (e.g., Nakazato+13/15, Møller+18, Ashida+Nakazato 22)
- considering neutrino oscillations (e.g., Lunardini+Tamborra 12)
- including **failed (BH-forming) SNe** for certain progenitor mass intervals (e.g., Lunardini 09, Priya+Lunardini 17, Møller+18)
- impact of **late-time** neutrino emission (e.g., Ekanger+22)
- considering large sets of numerical models, accounting for progenitor variability (e.g., Horiuchi+18, Kresse+21)
- considering **binary progenitors** (e.g., Horiuchi+21, Kresse+21)

(2) Cosmic core-collapse rate

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} = c \int \frac{\mathrm{d}N_{\mathrm{CC}}}{\mathrm{d}E'} \frac{\mathrm{d}E'}{\mathrm{d}E} R_{\mathrm{CC}}(z) \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \mathrm{d}z$$

- Deduce core-collapse rate from star-formation history (SFH)
- Direct measurement of visible events (excl. faint / failed SNe)

(2) Cosmic core-collapse rate

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} = c \int \frac{\mathrm{d}N_{\mathrm{CC}}}{\mathrm{d}E'} \frac{\mathrm{d}E'}{\mathrm{d}E} R_{\mathrm{CC}}(z) \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \mathrm{d}z$$

- Deduce core-collapse rate from star-formation history (SFH)
- Direct measurement of visible events (excl. faint / failed SNe)

$$R_{\rm CC}(z) = \psi_*(z) \frac{\int_{8.7 \, M_\odot}^{125 \, M_\odot} dM \, \phi(M)}{\int_{0.1 \, M_\odot}^{125 \, M_\odot} dM \, M\phi(M)} \simeq \frac{\psi_*(z)}{116 \, M_\odot}$$

(rate of successful SNe **plus** rate of failed / faint explosions)

(2) Cosmic core-collapse rate

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E} = c \int \frac{\mathrm{d}N_{\mathrm{CC}}}{\mathrm{d}E'} \frac{\mathrm{d}E'}{\mathrm{d}E} R_{\mathrm{CC}}(z) \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \mathrm{d}z$$

- Deduce core-collapse rate from star-formation history (SFH)
- Direct measurement of visible events (excl. faint / failed SNe)

(3) Cosmological time (redshift) integral

$$\frac{d\Phi}{dE} = c \int \frac{dN_{\rm CC}}{dE'} \frac{dE'}{dE} R_{\rm CC}(z) \left\| \frac{dt_{\rm c}}{dz} \right\| dz$$
$$= \frac{c}{H_0} \int_0^{z_{\rm max}} \frac{dN_{\rm CC}}{dE'} \frac{R_{\rm CC}(z) dz}{\sqrt{\Omega_{\rm m}(1+z)^3 + \Omega_{\Lambda}}}$$

$$H_0 = 70 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$

 $\Omega_{\mathrm{m}} = 0.3 \text{ and } \Omega_{\Lambda} = 0.7$

Kresse, Ertl, & Janka (2021) ApJ 909, 169

- DSNB predictions based on large sets of (> 200) 1D CCSN models (simulated with the *Prometheus-HotB* code)
- Models previously discussed in Ertl+16/20, Sukhbold+16
- Neutrino signals cover long time spans (> 10 s)
- Model set accounts for large progenitor variability (non-monotonic pattern of successful / failed explosions)

DSNB Source Components & Redshift Contributions

- negligible contribution from electron-capture SNe (ECSNe)
- below ~ 15 MeV: dominant contribution from successful SNe above ~ 15 MeV: dominant contribution from failed SNe
- dominant contribution to the flux from $z \lesssim 1$ (within the detection window)

Fraction of Failed Explosions

 \bullet depending on the strength of the "neutrino engine" \rightarrow more/less successful explosions

Engine Model	Successful SNe	Failed SNe
Z9.6 & S19.8	82.2~%	17.8~%
Z9.6 & N20	77.2~%	22.8~%
Z9.6 & W18	73.1~%	26.9%
Z9.6 & W15	70.9~%	29.1~%
Z9.6 & W20	58.3~%	41.7~%

Kresse+2021 (ApJ, 909, 169; arXiv:2010.04728)

Fraction of Failed Explosions

• increased fraction of failed SNe \rightarrow enhancing the high-energy tail • reference case: Z9.6 & W18

Maximum NS Mass

Maximum NS Mass

- neutrino signals of successful explosions simulated up to $t_{\rm max} = 15 \, {
 m s}$
- BH cases up to critical baryonic mass $M_{
 m NS,b}^{
 m lim}$ (2.3, 2.7, 3.1, 3.5 $m M_{\odot}$)

• reference case: $M_{
m NS,b}^{
m lim} = 2.7 \ {
m M}_{\odot} \ ({
m GW170817})
ightarrow M_{
m grav} \sim 2.23 \ {
m M}_{\odot}$

Binary Stars

Binary Stars

Woosley 2019, Ertl+2020

Kresse+2021

Binary Stars

Horiuchi+2021

Major Uncertainty: Cosmic Star Formation History (SFH)

$$10^{1}$$

$$10^{0}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-2}$$

$$10^{-3}$$

$$\overline{\nu}_{e}$$

$$10^{-3}$$

$$\overline{\nu}_{e}$$

$$10^{-2}$$

$$\overline{\nu}_{e}$$

$$10^{-2}$$

$$\overline{\nu}_{e}$$

$$R_{\rm CC}(z) = \psi_*(z) \frac{\int_{8.7 \, M_\odot}^{125 \, M_\odot} dM \, \phi(M)}{\int_{0.1 \, M_\odot}^{125 \, M_\odot} dM \, M\phi(M)}$$

Cosmic core-collapse rate density ~ SFH
DSNB flux uncertainty of a factor of ~2

Mathews et al. (2014) Madau & Dickinson (2014) Fermi-LAT Collaboration et al. (2018)

Flavor oscillations (MSW)

$$\frac{d\Phi_{\bar{\nu}_{e}}}{dE} = \bar{p} \; \frac{d\Phi_{\bar{\nu}_{e}}^{0}}{dE} + (1 - \bar{p}) \; \frac{d\Phi_{\nu_{x}}^{0}}{dE}$$

 $\bar{p} \simeq 0.7$ or $\bar{p} \simeq 0$ for normal (NH) or inverted (IH) (lower mean energies of emitted electron neutrinos compared to electron antineutrinos and muon / tau neutrinos due to higher opacities and thus lower neutrinospheric temperatures)

Electron neutrino

DSNB component

Comparison with the Super-K flux limit

- comparison to $\bar{\nu}_e$ -flux limits set by the SK experiment: $\Phi_{17.3} \equiv \Phi(E > 17.3 \text{ MeV}) \lesssim (2.8 - 3.1) \text{ cm}^{-2} \text{s}^{-1}$ (Bays et al. 2012) (updated value: 2.7; Abe et al. 2021)
- $\mathrm{d}\Phi/\mathrm{d}E \simeq \phi_0 \exp(-E/E_0)$

Comparison with the Super-K flux limit

- comparison to $\bar{\nu}_e$ -flux limits set by the SK experiment: $\Phi_{17.3} \equiv \Phi(E > 17.3 \text{ MeV}) \lesssim (2.8 - 3.1) \text{ cm}^{-2} \text{s}^{-1}$ (Bays et al. 2012) (updated value: 2.7; Abe et al. 2021)
- $\mathrm{d}\Phi/\mathrm{d}E \simeq \phi_0 \exp(-E/E_0)$

Summary of DSNB Uncertainties

GWs from binary NS mergers (LIGO, VIRGO, KAGRA) & observations by NICER -> constraints on max. NS mass / NS radii / high-density EoS

Long-baseline oscillation experiments (JUNO) → neutrino mass hierarchy → constraints on flavor conversions

GWs from binary NS mergers (LIGO, VIRGO, KAGRA) & observations by NICER → constraints on max. NS mass / NS radii / high-density EoS

Long-baseline oscillation experiments (JUNO) \rightarrow neutrino mass hierarchy \rightarrow constraints on flavor conversions

Future DSNB measurements (SK-Gd, JUNO, HK, DUNE):

- probe the entire population of stellar collapse events with its full diversity (incl. faint & failed explosions)
- Imprints of new physics?? (e.g., de Gouvêa et al. 2020, Tabrizi & Horiuchi 2021)

GWs from binary NS mergers (LIGO, VIRGO, KAGRA) & observations by NICER → constraints on max. NS mass / NS radii / high-density EoS

Long-baseline oscillation experiments (JUNO) \rightarrow neutrino mass hierarchy \rightarrow constraints on flavor conversions

Future DSNB measurements (SK-Gd, JUNO, HK, DUNE):

 Imprints of new physics?? (e.g., de Gouvêa et al. 2020, Tabrizi & Horiuchi 2021) GWs from binary NS mergers (LIGO, VIRGO, KAGRA) & observations by NICER → constraints on max. NS mass / NS radii / high-density EoS

Long-baseline oscillation experiments (JUNO) \rightarrow neutrino mass hierarchy \rightarrow constraints on flavor conversions

Ongoing / future work:

- Enlarged library of neutrino signals from detailed SN models (for various EoS)
- Growing set of long-time 3D models → cross-check 1D models; study "explodability"

1D vs 3D (work in progress)

 models often computed under assumption of spherical symmetry (1D) due to computational costs

 Nature is intrinsically multidimensional (3D), e.g., hydrodynamical fluid instabilities

1D vs 3D (work in progress)

Future DSNB measurements (SK-Gd, JUNO, HK, DUNE):

 Imprints of new physics?? (e.g., de Gouvêa et al. 2020, Tabrizi & Horiuchi 2021) GWs from binary NS mergers (LIGO, VIRGO, KAGRA) & observations by NICER → constraints on max. NS mass / NS radii / high-density EoS

Long-baseline oscillation experiments (JUNO) \rightarrow neutrino mass hierarchy \rightarrow constraints on flavor conversions

Ongoing / future work:

- Enlarged library of neutrino signals from detailed SN models (for various EoS)
- Growing set of long-time 3D models → cross-check 1D models; study "explodability"

Thank you!

Future DSNB measurements (SK-Gd, JUNO, HK, DUNE):

 Imprints of new physics?? (e.g., de Gouvêa et al. 2020, Tabrizi & Horiuchi 2021) GWs from binary NS mergers (LIGO, VIRGO, KAGRA) & observations by NICER → constraints on max. NS mass / NS radii / high-density EoS

Long-baseline oscillation experiments (JUNO) \rightarrow neutrino mass hierarchy \rightarrow constraints on flavor conversions

Ongoing / future work:

- Enlarged library of neutrino signals from detailed SN models (for various EoS)
- Growing set of long-time 3D models → cross-check 1D models; study "explodability"