
Status and prospects
of DSNB modeling

Collaborators: Thomas Janka, Thomas Ertl, 
Malte Heinlein, Robert Bollig, Tobias Melson, 
Alexander Summa, et al.

Daniel Kresse, 2024-09-17



Raffelt (1999)



Earth is exposed to a bath of relic neutrinos from all past CCSNe:
diffuse supernova neutrino background (DSNB)

“guaranteed” (isotropic and stationary) signal of MeV (anti-)neutrinos:
expected flux of electron antineutrinos: ~(20-50) cm-2 s-1
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Core-collapse Supernovae
in a Nutshell

● Onion-shell-like structure
● Stellar radius: ~108-109 km
● Iron (Fe) core: ~103 km

● Fe core collapses to a 
Proto-Neutron Star (PNS)

● Core bounce launches a 
shock wave (stagnates)

● Shock revival by neutrino 
energy deposition



Neutrino-driven Explosion Mechanism

● Gravitational binding energy of the collapsed Fe core
(~3–4 x 1053 erg) transiently stored in a hot and inflated PNS

● PNS contracts and cools via neutrino emission over ~10 s
● ~1% of neutrinos reabsorbed (in “gain layer” / heating layer)
● Shock revival (aided by fluid instabilities: convection & SASI)

Arnett (1966)
Colgate & White (1966)
Bethe & Wilson (1985)



Neutrino energy release from SNe

 Neutrino burst Accretion  NS cooling
NS formation

Mirizzi, Tamborra, Janka, et al. (2016)
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NS formation

BH formation

Neutrino energy release from SNe

 Neutrino burst Accretion  NS cooling

Neutrino Emission From 
Core-Collapse Supernovae

Mirizzi, Tamborra, Janka, et al. (2016)



Neutrino Emission Across 
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DSNB modeling



DSNB modeling

Long history of theoretical modeling:
e.g., Krauss+84, Dar 85, Hartmann+Woosley 97, Ando+Sato 03, Strigari+04/05, 
Hopkins+Beacom 06, Lunardini 06/07/09, Totani+09, Lunardini+Tamborra 12, 
Nakazato+13/15, Mathews+14, Hidaka+16/18, Horiuchi+18/21, Møller+18, 
Tabrizi+Horiuchi 21, Ashida+Nakazato 22/23, Suliga+22, Ekanger+22/24, 
Ziegler+22, Anandagoda+23, … (non-exhaustive!!)

Reviews:
Ando & Sato (2004), Beacom (2010), Lunardini (2016), Ando et al. (2023)



(1) IMF-averaged time-integrated 
neutrino source spectrum

● thermal spectrum (e.g., Horiuchi+09)
● pinched/anti-pinched α spectrum (e.g, Keil+03, Lunardini 07)
● numerical spectra from exemplary CCSN simulations

(e.g., Nakazato+13/15, Møller+18, Ashida+Nakazato 22)
● considering neutrino oscillations (e.g., Lunardini+Tamborra 12)
● including failed (BH-forming) SNe for certain progenitor mass 

intervals (e.g., Lunardini 09, Priya+Lunardini 17, Møller+18)
● impact of late-time neutrino emission (e.g., Ekanger+22)
● considering large sets of numerical models, accounting for 

progenitor variability (e.g., Horiuchi+18, Kresse+21)
● considering binary progenitors (e.g., Horiuchi+21, Kresse+21)

→ many different approaches
     & degrees of sophistication
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(2) Cosmic core-collapse rate

● Deduce core-collapse rate from 
star-formation history (SFH)

● Direct measurement of visible 
events (excl. faint / failed SNe)

Lien, Fields, Beacom (2010)



(3) Cosmological time (redshift) integral



Kresse, Ertl, & Janka (2021)
ApJ 909, 169

● DSNB predictions based on large sets of (> 200) 1D CCSN 
models (simulated with the Prometheus-HotB code)

● Models previously discussed in Ertl+16/20, Sukhbold+16

● Neutrino signals cover long time spans (> 10 s)
● Model set accounts for large progenitor variability

(non-monotonic pattern of successful / failed explosions)



















Ando+23



Flavor oscillations (MSW) Electron neutrino
DSNB component

(lower mean energies of emitted 
electron neutrinos compared to 
electron antineutrinos and muon / 
tau neutrinos due to higher 
opacities and thus lower neutrino-
spheric temperatures)
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1D vs 3D (work in progress)

● models often computed 
under assumption of 
spherical symmetry (1D) due 
to computational costs

● Nature is intrinsically multi-
dimensional (3D), e.g., hydro-
dynamical fluid instabilities



1D vs 3D (work in progress)

PRELIM
INARY
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Thank you!

● probe the entire population of 
stellar collapse events with its 
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● Imprints of new physics??
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