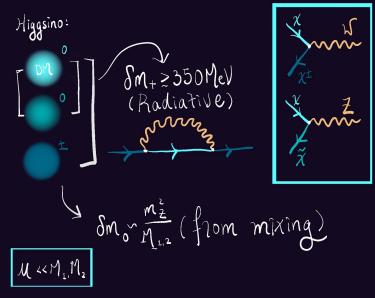
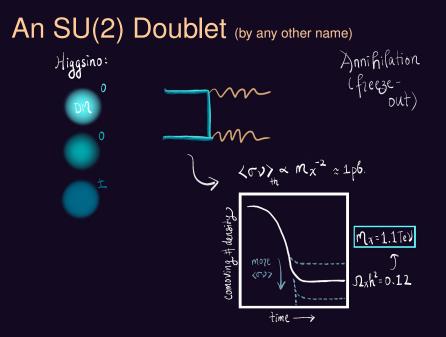
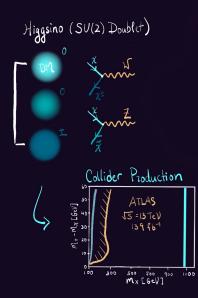

The road to Higgsino DM

MITP DM Workshop 2024

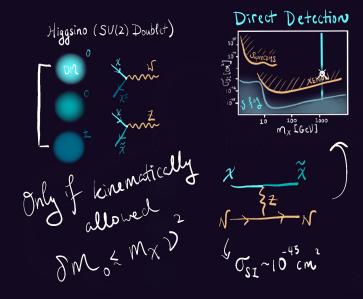
2207.10090 w/ C. Dessert, J. Foster, B. Safdi, Y. Park 2405.13104 w/ N. Rodd, B. Safdi

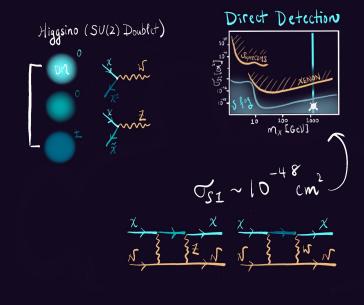

Weishuang Linda Xu

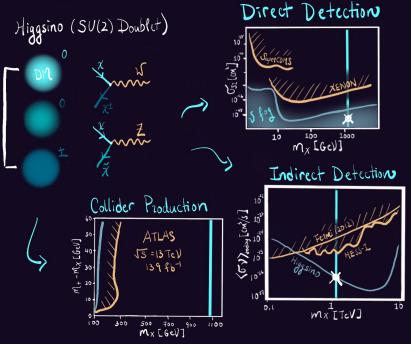

UC Berkeley/LBNL (\rightarrow SLAC)

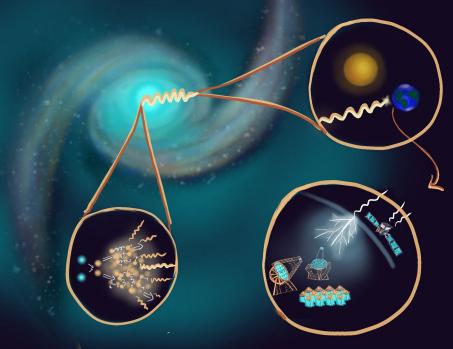

Timb Wir olvolow? freedout Neak sale Just ... intopetions, Small integaction ? ~> scattering Electroweak w) nuclions? intractions? 3 annihilating noto WIM SIM S- care ; Susyire Stabilized view disight symmetry? MET at colliders? mx~100Gel)? 2027~p6?

Conclusions


- 1. The nearly-pure higgsino is still one of our best DM theories
- 2.
- 3.
- 4. 5.

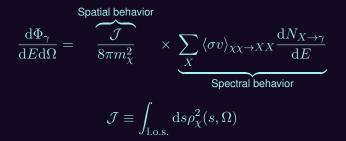




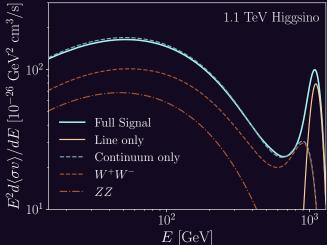


W. Linda Xu

The road to Higgsino DN

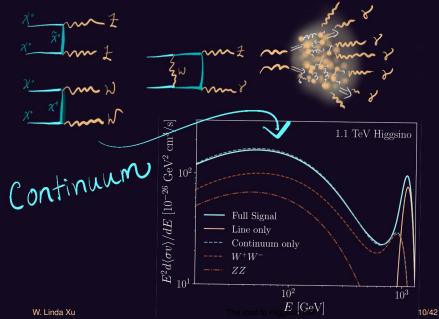

Conclusions

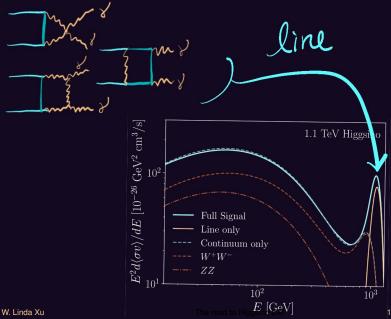
- 1. The nearly-pure higgsino is one of our best DM theories
- 2. The shortest path to discovery is in indirect detection
- 3.
- 4.
- 5.

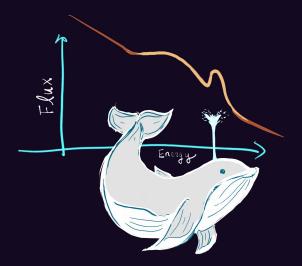


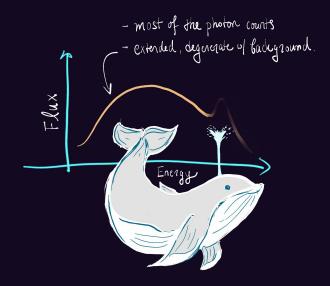
W. Linda Xu

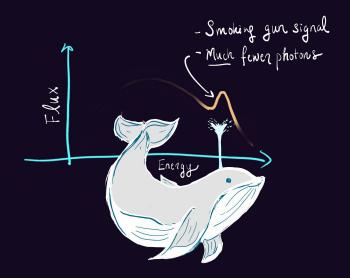
The road to Higgsino DM


Spectral signal (Well known)

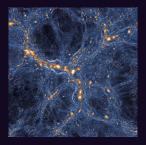

[Beneke, Urban & Vollmann, 2203.01692]


See Martin's talk on Friday!


Spectral signal (Well known)



Spectral signal (Well known)



We don't know how to directly measure (or predict) the distribution of DM in our galaxy

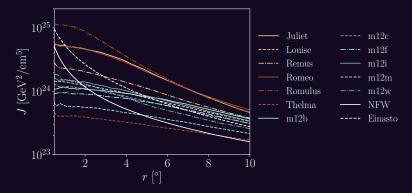
CDM-only n-body sims give a fairly universal behavior

$$\rho_{\chi,NFW} = \frac{\rho_s}{(r/r_s)(1+r/r_s)^3}$$

...However, baryons exist (> 5σ) & are important for the Galactic center

$$dJ/dD \sim \int ds \rho_{over} [GeV^{2}(cm^{2}/sr]]$$

 $10^{21} 10^{22} 10^{23} 10^{24}$

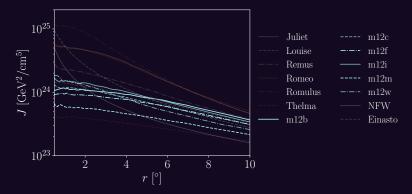


Feedback In Realistic Environments

[FIRE-2 collab., McKeown et. al. MNRAS 513 1 pp.55-70]

The road to Higgsino DM

12 MW-like hydro sims, each giving a different profile and $$\mathcal{J}$$ -factor

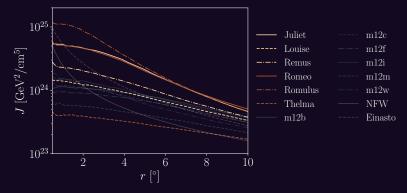


[FIRE-2 collab., McKeown et. al. MNRAS 513 1 pp.55-70]

W. Linda Xu

The road to Higgsino DN

12 MW-like hydro sims, each giving a different profile and $$\mathcal{J}$$ -factor

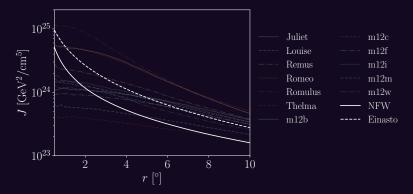


[FIRE-2 collab., McKeown et. al. MNRAS 513 1 pp.55-70]

W. Linda Xu

The road to Higgsino DN

12 MW-like hydro sims, each giving a different profile and $\mathcal{J}\text{-}\mathsf{factor}$

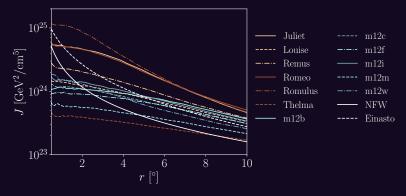


6 of these evolved in pairs (à la MW + M31)

W. Linda Xu

[FIRE-2 collab., McKeown et. al. MNRAS 513 1 pp.55-70] 14/42

12 MW-like hydro sims, each giving a different profile and $$\mathcal{J}$$ -factor

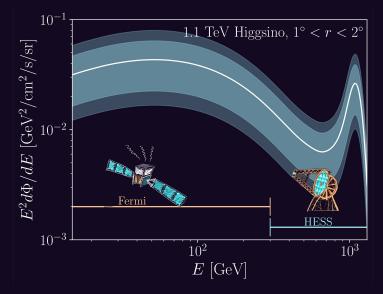


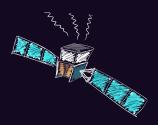
[FIRE-2 collab., McKeown et. al. MNRAS 513 1 pp.55-70]

W. Linda Xu

The road to Higgsino DN

12 MW-like hydro sims, each giving a different profile and \mathcal{J} -factor




Systematically more cored (but not less abundant) Giant variation between sims

Conclusions

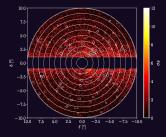
- 1. The nearly-pure higgsino is one of our best DM theories
- 2. The shortest path to discovery is in indirect detection
 - We critically need better understanding of local/galactic distributions
- 3.
- 4.
- 5.

Let's start with what we have

Fermi - Large Area Telescope (LAT):

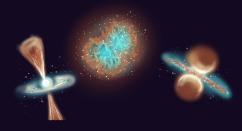
- 100 MeV TeV reach
- \blacktriangleright peak sensitivity at $\sim 10 \text{ GeV}$
- $\blacktriangleright \sim m^2$ Effective area
- $\blacktriangleright \sim 10\%$ energy resolution
- 15 years of data scanning the sky

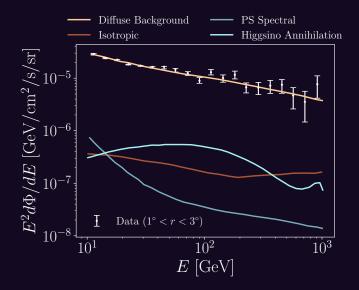
High Energy Stereoscopic System (H. E. S. S.):

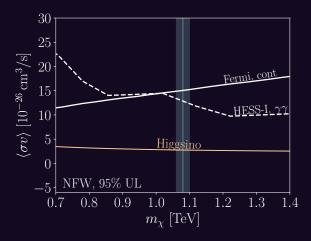

- 100 GeV 100 TeV reach
- peak sensitivity at ~ 10 TeV
- $\blacktriangleright \sim 0.1 \, \mathrm{km}^2$ effective area
- \blacktriangleright ~ 10% energy resolution
- \blacktriangleright 800h of data pointed at the GC, \sim 500h more to come

Part I: A continuum search with Fermi

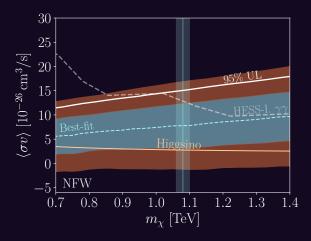
[w/ Chris Dessert & Josh Foster, 2207.10090]

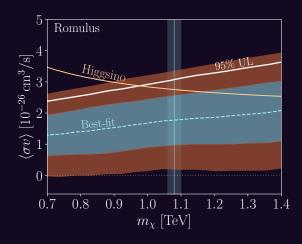

The road to Higgsino DM


- Masked GP $|b| \leq 1^{\circ}$, pt sources
- ► ROI: 9 concentric annuli, each 1°
 - forgiving of under-masking, template mismatch
 - follow spatial profile of signal
- ▶ 21 bins, $E \in [10 \text{GeV}, 2 \text{TeV}]$
 - Avoids most of diffuse background, + the GCE


Background components

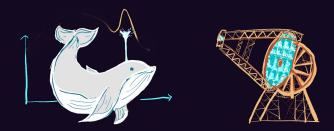
- p8r3 diffuse Galactic emission
- + associated isotropic flux
- 4FGL point source spectral





[Phys.Rev.Lett. 130 (2023) 20, 201001]

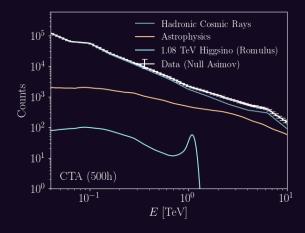
[Phys.Rev.Lett. 130 (2023) 20, 201001]

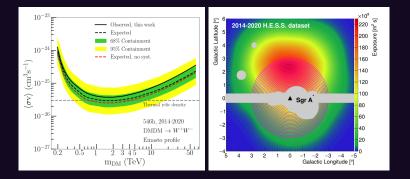

~ 2σ excess at ~ TeV masses in most FIRE profiles
 Limited by ability to model background

[Phys.Rev.Lett. 130 (2023) 20, 201001]

- 1. The nearly-pure higgsino is one of our best DM theories
- 2. The shortest path to discovery is in indirect detection
 - We critically need better understanding of local/galactic distributions
- 3. There are intriguing hints at lower energies ...
- 4.
- 5.

- 1. The nearly-pure higgsino is one of our best DM theories
- 2. The shortest path to discovery is in indirect detection
 - We critically need better understanding of local/galactic distributions
- 3. There are intriguing hints at lower energies ...
- 4. ... but smoking gun discoveries will need to come at the TeV scale
- 5.


Part II: A deep dive into line searches with H.E.S.S.

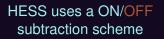


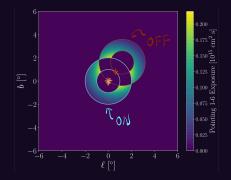
Background components:

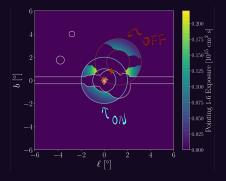
- Misidentified Cosmic Rays
 - Isotropic, extragalactic
 - ~ 99% rejection

Point SourcesDiffuse Emission

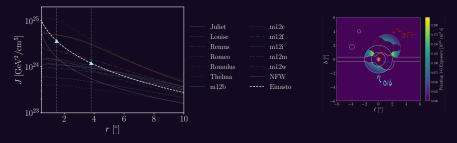
[2207.10471, Phys. Rev. Lett. 129, 111101 (2022)]

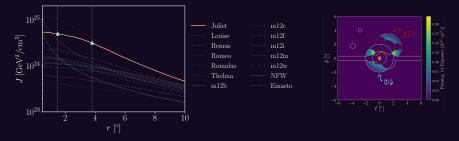

W. Linda Xu


The road to Higgsino DM

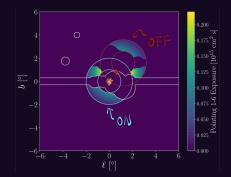

We do not have access to the data, but there is a lot to learn from what's been released.

There are two, independent, key points here.


This study uses a suboptimal analysis strategy for the Galactic center

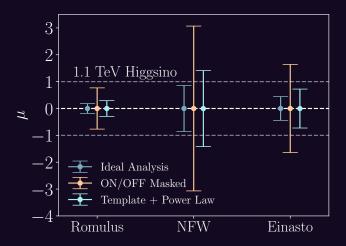


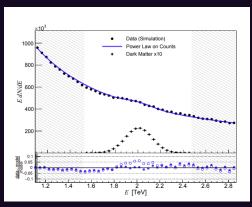
$$N^{ON} - N^{OFF} = N^{\text{Signal}} \sim \langle \sigma v \rangle \left(\mathcal{J}^{ON} - \mathcal{J}^{OFF} \right)$$



 $N^{ON} - N^{OFF} = N^{\text{Signal}} \sim \langle \sigma v \rangle \left(\overline{\mathcal{J}^{ON} - \mathcal{J}^{OFF}} \right)$

 $N^{ON} - N^{OFF} = N^{\text{Signal}} \sim \langle \sigma v \rangle \left(\mathcal{J}^{ON} - \mathcal{J}^{OFF} \right)$


- Optimized for point sources
- Not robust for diffuse background
- Loses 60 95 % of signal counts in the GC
- Highly sensitive to DM profile



The wrong analysis strategy can leave *a lot* of sensitivity on the table

We advocate for a template analysis

- Use all inner Galaxy data for signal
- Model CR bkg with high-statistics data-driven template
 - Every point source observation contains blank sky footage
 - A lot of opportunity to stress-test this
- + Fermi diffuse model or Power law for astro component

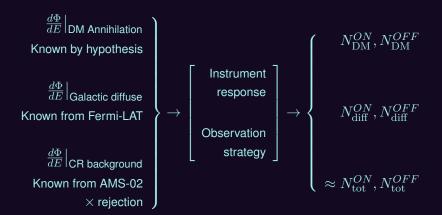
See [Torsten et al, 2403.04857]! Line search w/ sliding window

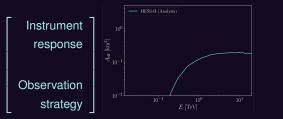
N.B. :

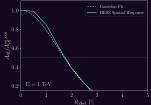
Power law / sliding window techniques trade bias/sensitivity

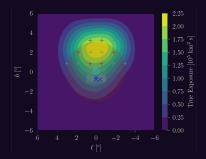
 $\blacktriangleright\,$ Neglecting the continuum for us can lower TS by factor ~ 2

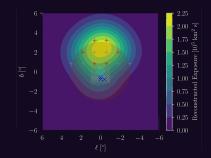
We do not have access to the data, but there is a lot to learn from what's been released.

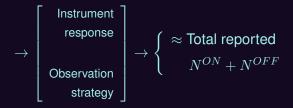

There are two, independent, key points here.

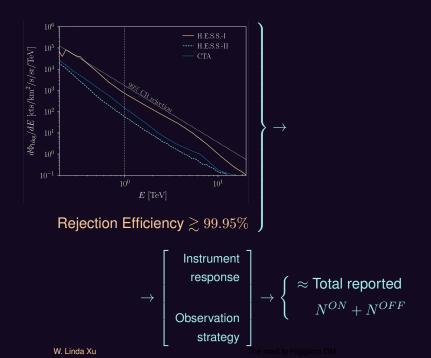

- This study uses a suboptimal analysis strategy for the Galactic center
- We think H.E.S.S. mischaracterizes their sensitivity by a factor of ~ 8

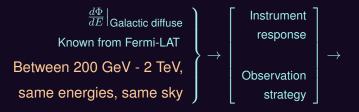

We do not have access to the data, but there is a lot to learn from what's been released.

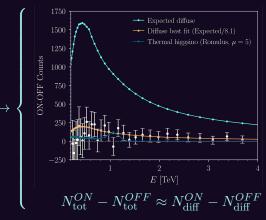

There are two, independent, key points here.

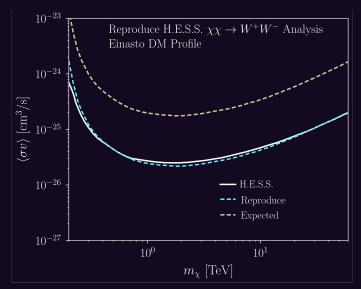

- This study uses a suboptimal analysis strategy for the Galactic center
- We think H.E.S.S. mischaracterizes their sensitivity by a factor of ~ 8





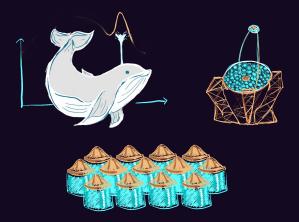

$$\frac{d\Phi}{dE}\Big|_{\text{CR background}} = \epsilon_{\text{rej.}} \times 9.6 \times 10^4 \left[\frac{E}{\text{TeV}}\right]^{-2.7} \\ \text{cts/s/sr/TeV/km}^2 \end{cases} \rightarrow$$





$$\begin{array}{c} \frac{d\Phi}{dE}|_{\text{Galactic diffuse}} \\ \text{Known from Fermi-LAT} \\ \text{Between 200 GeV - 2 TeV,} \\ \text{same energies, same sky} \end{array} \right\} \rightarrow \left[\begin{array}{c} \text{Instrument} \\ \text{response} \\ \\ \text{Observation} \\ \\ \text{strategy} \end{array} \right] \rightarrow$$

$$\rightarrow \left\{ N_{\text{tot}}^{ON} - N_{\text{tot}}^{OFF} \approx N_{\text{diff}}^{ON} - N_{\text{diff}}^{OFF} \right.$$



[Genuinely welcome any feedback, would be exciting to be wrong!]

- 1. The nearly-pure higgsino is one of our best DM theories
- 2. The shortest path to discovery is in indirect detection
 - We critically need better understanding of local/galactic distributions
- 3. There are intriguing hints at lower energies ...
- 4. ... but smoking gun discoveries will need to come at the TeV scale
 - The analysis strategy can make or miss a discovery
 - There are some concerns with what we currently have

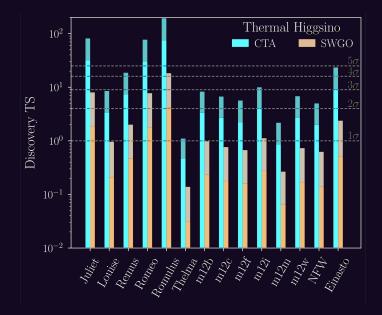
5.

Part III: A look into future with CTA and SWGO

The road to Higgsino DM

CTA (-South*):

- \blacktriangleright peak sensitivity \sim TeV
- $ightarrow \sim 1\,{\rm km}^2$ effective area
- \blacktriangleright ~ 5% energy resolution
- \blacktriangleright ~ 500h in inner GC
- $\blacktriangleright \sim 4^{\circ} \text{ FOV}$



SWGO:

- \blacktriangleright peak sensitivity \sim 10 TeV
- $\blacktriangleright \sim 0.1 \, \mathrm{km^2}$ effective area
- \blacktriangleright ~ 20% energy resolution
- $\blacktriangleright~\sim$ 6 hrs/day for \sim 5 years
- ~ 1 sr FOV

* Also exciting potential with CTA-North!

- 1. The nearly-pure higgsino is one of our best DM theories
- 2. The shortest path to discovery is in indirect detection
 - We critically need better understanding of local/galactic distributions
- 3. There are intriguing hints at lower energies ...
- 4. ... but smoking gun discoveries will need to come at the TeV scale
 - The analysis strategy can make or miss a discovery
 - There are some concerns with current data
- 5. We have a very optimistic shot with CTA & SWGO

