TBA The Dark Matter Landscape MITP 2024

Martin Vollmann – Uni Tuebingen – 13.9.2024

The Basics of Annihilation* The Dark Matter Landscape MITP 2024

Martin Vollmann – Uni Tuebingen – 13.9.2024

Credit: S. Sevillano/M. Fujiwara

Intro Very rough and (deliberately) misleading picture

Energy [TeV's]

Credit: W. Linda Xu

2410.XXXXX

MOTOKINO Resummed photon spectrum from MOTOKIN interacting spin 1 dark matter annihilation

Motoko Fujiwara^{a*}, Martin Vollmann^{$b\dagger$}

^aPhysik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany ^b Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

Tübingen, Germany ^b Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076

arXiv:2310.11067

Sommerfeld effect for continuum gamma-ray spectra from Dark Matter annihilation

Barbara Jäger[®], Martin Vollmann[®]

Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

October 18, 2023

October 18, 2023

Outline

Motivation

Indirect detection

Sommerfeld factor

Conclusions

Motivation

WIMP: the devil that you know Did you know that...

- There is experimental evidence for **Dark Matter**
- There is experimental evidence for electroweak interactions
- Although there is no experimental evidence for the **freeze-out mechanism**
 - still the simplest!

<u>High-scale</u> SUSY

- Unification of gauge couplings improved
- No SUSY CP problem (EDMs)
- Pure wino/higgsino -> very predictive scenarios
 - Maybe detectable with next-generation γ-ray telescopes (e.g. Rodd, Safdi, Xu 2405.13104)
- Naturalness

10^{-19} 10^{-22} 10^{-25} 10^{-25} 10^{-25} 10^{-25} 10^{-25} 10^{-25} 10^{-25} 10^{-25} 10^{-25} 10^{-28} 10^{-31} 10^{-34} 10^{-37} 10^{-40} 10^{-40} 10^{-43} $e \quad \mu \quad \tau \quad v_e \quad v_\mu \quad v_\tau \quad n \quad p \quad \Lambda^0 \quad \Lambda^+_c \quad = \stackrel{\bullet}{c}$ 10^{-40} 10^{-43} PiD biD bi

■ SM–CKM ■ SM–Θ ■ <d^(expected) ■ <d^(meas)

But really... Why?

And why you should still care!

- WIMPs are **not** dead yet!
- The miracle is still a miracle
- If you want to rule them out better be sure that you didn't overlook anything

NEED ACCURATE THEORETICAL PREDICTIONS

• The physics is fun and the "spare parts" are useful as long as there are electroweak interactions in nature

Outline

Motivation

Indirect detection

Sommerfeld factor

Conclusions

Indirect detection

Gamma-ray flux formula

 $ho_{
m DM}$

Example (Ad break) Draco dwarf galaxy with diffSph [2401.05255]

+58°05'-Draco +58°00'-Dec +57 ° 55' -+57°50'-HDZ/gNFW (Geringer +57°45'--Sameth et al 2015) 17h20' 17h19' 17h21'

$dJ/d\Omega$ [GeV² cm⁻⁵ sr⁻¹]

R.A.

https://github.com/mertio1/diffsph

diffSph (2401.05255)

attah

Gamma-ray flux formula

 $= \frac{1}{8\pi m_{\gamma}^2} \times J \times \frac{\mathrm{d}\,\sigma v}{\mathrm{d}E_{\gamma}}$ Φ

The problem: Obtain the annihilation spetrum

TBA The Basics of Annihilation

2000-2010s

Fixed-order $2 \rightarrow 2$ (tree) + Parton Shower

Helicity suppression If $m_{DM} \gg m_b, m_\tau$ (and $v \ll c$):

$$\langle \sigma v \rangle_{b\bar{b}} \propto \frac{m_b^2}{m_{DM}^2} \to 0$$

$dN_{\overline{b}b}^{MC}$ $d\sigma v$ $\bar{b}b$ E_{γ} E_{γ}

d N^{MC}

TBA The Basics of Annihilation

2000-2010s

Fixed-order 2 → 3 (tree) + Parton Shower

 χ_1^0

Internal bremsstrahlung Lift helicity suppression

° 2→2 process
$$\langle \sigma v \rangle_{b\bar{b}} \propto \frac{m_b^2}{m_{DM}^2} \to 0$$

° 2→3 process $\langle \sigma v \rangle_{b\bar{b}v} \neq 0$

Bringmann et al 0710.3169

TBA The Basics of Annihilation

TBA The Basics of Annihilation

Hisano, Matsumoto, Nojiri <u>hep-ph/0307216</u>

Arkani-Hamed, Slatyer, Weiner <u>0810.0713</u>

Resummation Breakdown of perturbative expansion when $m_{\chi} \gg m_W$

Tree (LO)

1-loop (NLO)

2-loop (NNLO)

Resummation <u>Goal</u>: factor out the "gorillas"

 $\frac{\mathrm{d}\,\sigma v}{\mathrm{d}\,E_{v}} = f\left(\alpha_{ew} \times \mathbf{n}\right) \times \left(\#\alpha_{ew}^{3} + \mathcal{O}(\alpha_{ew}^{4})\right)$

"safe" to use perturbation theory

TBA The Basics of Annihilation

2020s (before our paper came out)

Fixed-order 2 → 2 + Parton Shower + Sommerfeld factor

Fixed-order 2 → 3 + Parton Shower + Sommerfeld factor Incomplete (missing shower for e.g. $\chi^0 \chi^0 \to H^{\pm} W^{\mp}$)
 Helicity-suppressed cross sections still suppressed
 ...

• Only extrapolations from our endpoint factorization formulas available and for pure wino/higgsino

Outline

Motivation

Indirect detection

Sommerfeld factor

Conclusions

Sommerfeld factor

Resummation Goal: factor out the "gorillas"

dov $= f\left(\alpha_{ew} \times \mathbf{n}\right) \times \left(\# \alpha_{ew}^3 + \mathcal{O}(\alpha_{ew}^4)\right)$ dE_{ν}

Sommerfeld factor Reframe the question: QFT @ Quantum Mechanics

Non-relativistic Yukawa potential-like interactions!!!!

Sommerfeld factor Putting all things together

 $d\sigma v$ Particle pairs

QFT perturbation theory

Go to the blackboard I

The MSSM in a nutshell Particles and more particles

The MSSM in a nutshell Neutralino/chargino sector

Charginos

Neutralinos

 $V(r) \sim \frac{\alpha}{r} + \frac{\alpha_{ew}e^{-m_Wr}}{r} + \frac{\alpha_{ew}e^{-m_Zr}}{r} + \dots$

Charginos

Neutralinos

$V(r) \rightarrow V_{IJ}(r)$

Charginos

Neutralinos

$v_{(\hat{11})(\hat{11})}$	$v_{(\hat{11})(\hat{12})}$	$v_{(\hat{11})(\hat{13})}$	$v_{(\hat{11})(\hat{14})}$	$v_{(\hat{11})(\hat{22})}$	$v_{(\hat{11})(\hat{23})}$	$v_{(\hat{11})(\hat{24})}$	$v_{(\hat{11})(\hat{33})}$	$v_{(\hat{11})(\hat{34})}$	$v_{(\hat{11})(\hat{44})}$	$v_{(\hat{11})\langle 1\bar{1}\rangle}$	$v_{(\hat{11})\langle 1\bar{2}\rangle}$	$v_{(\hat{11})\langle 2\bar{1}\rangle}$	$v_{(11)}$
$v_{(\hat{12})(\hat{11})}$	$v_{(\hat{12})(\hat{12})}$	$v_{(\hat{12})(\hat{13})}$	$v_{(\hat{12})(\hat{14})}$	$v_{(\hat{12})(\hat{22})}$	$v_{(\hat{12})(\hat{23})}$	$v_{(\hat{12})(\hat{24})}$	$v_{(\hat{12})(\hat{33})}$	$v_{(\hat{12})(\hat{34})}$	$v_{(\hat{12})(\hat{44})}$	$v_{(\hat{12})\langle 1\bar{1}\rangle}$	$\mathcal{V}_{(\hat{12})\langle 1\bar{2}\rangle}$	$v_{(\hat{12})\langle 2\bar{1}\rangle}$	$v_{(12)}$
$v_{(\hat{13})(\hat{11})}$	$v_{(\hat{13})(\hat{12})}$	$v_{(\hat{13})(\hat{13})}$	$v_{(\hat{13})(\hat{14})}$	$v_{(\hat{12})(\hat{22})}$	$v_{(\hat{13})(\hat{23})}$	$v_{(\hat{13})(\hat{24})}$	$v_{(\hat{13})(\hat{33})}$	$v_{(\hat{13})(\hat{34})}$	$v_{(\hat{13})(\hat{44})}$	$v_{(\hat{13})\langle 1\bar{1}\rangle}$	$v_{(\hat{13})\langle 1\bar{2}\rangle}$	$v_{(\hat{13})\langle 2\bar{1}\rangle}$	$v_{(13)}$
$v_{(\hat{14})(\hat{11})}$	$v_{(14)(12)}$	$v_{(14)(13)}$	$v_{(14)(14)}$	$v_{(\hat{12})(\hat{22})}$	$v_{(\hat{14})(\hat{23})}$	$v_{(\hat{14})(\hat{24})}$	$v_{(\hat{14})(\hat{33})}$	$v_{(14)(34)}$	$v_{(14)(44)}$	$v_{(14)\langle 1\bar{1}\rangle}$	$v_{(14)\langle 1\bar{2}\rangle}$	$v_{(14)\langle 2\overline{1}\rangle}$	$v_{(14)}$
$v_{(\hat{22})(\hat{11})}$	$v_{(\hat{22})(\hat{12})}$	$v_{(\hat{22})(\hat{13})}$	$v_{(\hat{22})(\hat{14})}$	$v_{(\hat{22})(\hat{22})}$	$v_{(\hat{22})(\hat{23})}$	$v_{(\hat{22})(\hat{24})}$	$v_{(\hat{22})(\hat{33})}$	$v_{(\hat{22})(\hat{34})}$	$v_{(\hat{22})(\hat{44})}$	$v_{(\hat{22})\langle 1\bar{1}\rangle}$	$v_{(\hat{22})\langle 1\bar{2}\rangle}$	$\hat{v}_{(\hat{22})\langle\hat{21}\rangle}$	$v_{(22)}$
$v_{(23)(11)}$	$v_{(23)(12)}$	$v_{(23)(13)}$	$v_{(23)(14)}$	$v_{(23)(22)}$	$v_{(23)(23)}$	$v_{(23)(24)}$	$v_{(23)(33)}$	$v_{(23)(34)}$	$v_{(23)(44)}$	$v_{(23)\langle 1\overline{1}\rangle}$	$v_{(23)\langle 1\bar{2}\rangle}$	$v_{(23)\langle 2\overline{1}\rangle}$	$v_{(23)}$
$v_{(24)(11)}$	$v_{(24)(12)}$	$v_{(24)(13)}$	$v_{(24)(14)}$	$v_{(24)(22)}$	$v_{(24)(23)}$	$v_{(24)(24)}$	$v_{(24)(33)}$	$v_{(24)(34)}$	$v_{(24)(44)}$	$\hat{v}_{(24)\langle 1\bar{1}\rangle}$	$\hat{v}_{(24)\langle 1\bar{2}\rangle}$	$\hat{v}_{(24)\langle 2\bar{1}\rangle}$	$v_{(24)}$
$v_{(\hat{33})(\hat{11})}$	$v_{(\hat{33})(\hat{12})}$	$v_{(\hat{33})(\hat{13})}$	$v_{(\hat{33})(\hat{14})}$	$v_{(\hat{33})(\hat{22})}$	$v_{(\hat{33})(\hat{23})}$	$v_{(\hat{33})(\hat{24})}$	$v_{(\hat{33})(\hat{33})}$	$v_{(\hat{33})(\hat{34})}$	$v_{(\hat{33})(\hat{44})}$	$v_{(\hat{33})\langle 1\bar{1}\rangle}$	$v_{(\hat{3}\hat{3})\langle 1\bar{2}\rangle}$	$v_{(\hat{3}\hat{3})\langle 2\bar{1}\rangle}$	V(33)
$v_{(\hat{34})(\hat{11})}$	$v_{(\hat{34})(\hat{12})}$	$v_{(\hat{34})(\hat{13})}$	$v_{(\hat{34})(\hat{14})}$	$v_{(\hat{34})(\hat{22})}$	$v_{(\hat{34})(\hat{23})}$	$v_{(\hat{34})(\hat{24})}$	$v_{(\hat{34})(\hat{33})}$	$v_{(\hat{34})(\hat{34})}$	$v_{(\hat{34})(\hat{44})}$	$v_{(34)\langle 1\bar{1}\rangle}$	$\hat{v}_{(34)\langle 1\bar{2}\rangle}$	$\hat{v}_{(34)\langle 2\bar{1}\rangle}$	$v_{(34)}$
$v_{(\hat{44})(\hat{11})}$	$v_{(44)(12)}$	$v_{(44)(13)}$	$v_{(44)(14)}$	$v_{(44)(22)}$	$v_{(44)(23)}$	$v_{(44)(24)}$	$v_{(44)(33)}$	$v_{(44)(34)}$	$v_{(44)(44)}$	$\mathcal{V}_{(44)\langle 1\overline{1}\rangle}$	$\mathcal{V}_{(\hat{4}\hat{4})\langle 1\bar{2}\rangle}$	$\mathcal{V}_{(\hat{4}4)\langle 2\bar{1}\rangle}$	$v_{(44)}$
$\mathcal{V}_{\langle 1\bar{1}\rangle(\hat{11})}$	$v_{\langle 1\bar{1}\rangle(12)}$	$v_{\langle 1\bar{1}\rangle(1\bar{3})}$	$v_{\langle 1\bar{1}\rangle(1\bar{4})}$	$\mathcal{V}_{\langle 1\bar{1}\rangle(22)}$	$v_{\langle 1\bar{1}\rangle(2\bar{3})}$	$\mathcal{V}_{\langle 1\bar{1}\rangle(24)}$	$v_{\langle 1\bar{1}\rangle(3\bar{3})}$	$v_{\langle 1\bar{1}\rangle(34)}$	$v_{\langle 1\bar{1}\rangle(44)}$	$\mathcal{V}_{\langle 1\overline{1}\rangle\langle 1\overline{1}\rangle}$	$\mathcal{V}_{\langle 1\bar{1}\rangle\langle 1\bar{2}\rangle}$	$\mathcal{V}_{\langle 1\bar{1}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 1\overline{1}\rangle}$
$\mathcal{V}_{\langle 1\bar{2}\rangle(\hat{11})}$	$v_{\langle 1\bar{2}\rangle(1\bar{2})}$	$v_{\langle 1\bar{2}\rangle(\hat{13})}$	$v_{\langle 1\bar{2}\rangle(1\bar{4})}$	$\mathcal{V}_{\langle 1\bar{2}\rangle(\hat{22})}$	$v_{\langle 1\bar{2}\rangle(2\bar{3})}$	$\mathcal{V}\langle 1\bar{2}\rangle(\hat{24})$	$v_{\langle 1\bar{2}\rangle(\hat{33})}$	$v_{\langle 1\bar{2}\rangle(3\bar{4})}$	$v_{\langle 1\bar{2}\rangle(\hat{44})}$	$\mathcal{V}_{\langle 1\bar{2}\rangle\langle 1\bar{1}\rangle}$	$\mathcal{V}\langle 1\bar{2}\rangle\langle 1\bar{2}\rangle$	$\mathcal{V}_{\langle 1\bar{2}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 1\bar{2} \rangle}$
$\mathcal{V}\langle 2\bar{1}\rangle(\hat{11})$	$v_{\langle 2\bar{1}\rangle(12)}$	$v_{\langle 2\bar{1}\rangle(1\bar{3})}$	$v_{\langle 2\bar{1}\rangle(1\bar{4})}$	$v_{\langle 2\bar{1}\rangle(22)}$	$v_{\langle 2\bar{1}\rangle(2\bar{3})}$	$\mathcal{V}\langle 2\bar{1}\rangle(\hat{24})$	$v_{\langle 2\bar{1}\rangle(\hat{3}3)}$	$v_{\langle 2\bar{1}\rangle(3\bar{4})}$	$v_{\langle 2\bar{1}\rangle(4\bar{4})}$	$v_{\langle 2\bar{1}\rangle\langle 1\bar{1}\rangle}$	$v_{\langle 2\bar{1}\rangle\langle 1\bar{2}\rangle}$	$\mathcal{V}_{\langle 2\bar{1}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 2\overline{1}}$
$\mathcal{V}_{\langle 2\bar{2}\rangle(\hat{1}1)}$	$v_{\langle 2\bar{2}\rangle(\hat{12})}$	$v_{\langle 2\bar{2}\rangle(\hat{13})}$	$v_{\langle 2\bar{2}\rangle(14)}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(\hat{22})}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(2\bar{3})}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(2\bar{4})}$	$v_{\langle 2\bar{2}\rangle(\hat{3}3)}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(\hat{3}4)}$	$v_{\langle 2\bar{2}\rangle(\hat{44})}$	$\mathcal{V}\langle 2\bar{2}\rangle\langle 1\bar{1}\rangle$	$\mathcal{V}_{\langle 2\bar{2}\rangle\langle 1\bar{2}\rangle}$	$\mathcal{V}_{\langle 2\bar{2}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 2\bar{2} \rangle}$

V(r) =

 $\rangle \langle 2\bar{2} \rangle$ $2)\langle 2\bar{2}\rangle$ $\langle 2\bar{2} \rangle$ $\langle 2\bar{2} \rangle$ $2\rangle\langle 2\bar{2}\rangle$ $\langle 2\bar{2} \rangle$ $\bar{1}\rangle\langle 2\bar{2}\rangle$ $\bar{2}\rangle\langle 2\bar{2}\rangle$ $\bar{1}\rangle\langle 2\bar{2}\rangle$ $\langle 2\bar{2} \rangle$

Sommerfeld effect in the MSSM

 $d\sigma v$ dE_{γ}

14×14 matrix

105 independent terms

Jäger Vollmann 2023 arXiv: 2310.11067

The MSSM in a nutshell Neutralino/chargino sector

Charginos

Neutralinos

Pure wino

Neutralinos

Charginos

$$V(r) = \begin{pmatrix} 0 & -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} \\ -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} & -\frac{\alpha}{r} - \alpha_2 c_W^2 \frac{e^{-m_Z r}}{r} \end{pmatrix}$$

Further properties:

•
$$m_{\chi_1^0}^{\text{wimp}} \simeq 3 \text{ TeV}$$

• $\frac{m_{\chi_1^+} - m_{\chi_1^0}}{m_{\chi_1^0}} \simeq 5.5 \times 10^{-5}$

No couplings to quarks or gluons

Pure higgsino (see Linda's & Graham's slides)

Mediators

$$V(r) = \begin{pmatrix} 0 & -\frac{\alpha_2}{4c_W^2} \frac{e^{-mZ^r}}{r} & -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} \\ -\frac{\alpha_2}{4c_W^2} \frac{e^{-mZ^r}}{r} & 0 & -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} \\ -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} & -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} & -\frac{\alpha}{2\sqrt{2}} \frac{e^{-mW^r}}{r} \\ -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} & -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} & -\frac{\alpha}{2\sqrt{2}} \frac{\alpha_2(s_W^2 - c_W^2)^2}{4c_W^2} \frac{e^{-mZ^r}}{r} \end{pmatrix}$$

Further properties:

•
$$m_{\chi_1^0}^{\text{wimp}} \simeq 1 \text{ TeV}$$

• $\frac{m_{\chi_1^+} - m_{\chi_1^0}}{m_{\chi_1^0}} \simeq 3.5 \times 10^{-4}$

• No couplings to quarks or gluons

 Small admixture with wino/bino required in order to avoid direct-detection constraints

Motokino

Motokino DM **Charged Motokino** ψ^0_μ ψ^+_μ W'^+ Z'Mediators W^+ Ζ V

$$V^{\text{even}\,S}(r) = \begin{pmatrix} 0 & -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} \\ -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} & -\frac{\alpha}{r} - \alpha_2 c_W^2 \frac{e^{-m_Z r}}{r} \end{pmatrix}$$

Further properties:

- $m_{\psi^0}^{
 m wimp}$ depend on th. parameters
- No couplings to quarks or gluons
- Identical potential as for wino DM

Outline

Motivation

Indirect detection

Sommerfeld factor

Conclusions

Endpoint resummations

TBA The Basics of Annihilation

TBA The Basics of Annihilation

All-order 2 → N **next-to-leading** (prime) Sudakov logs + Parton Shower + Sommerfeld factor

All-order 2 → N next-to-leading (prime) Sudakov logs

+ Parton Shower + Sommerfeld factor

Baumgart, Cohen et al — <u>1712.07656</u>

Beneke, Broggio, Hasner, MV, Urban — 1903.08702

Fujiwara, Vollmann — 2411.XXXX

Resummation <u>Goal</u>: factor out the "gorillas"

 $\frac{\mathrm{d}\,\sigma v}{\mathrm{d}\,E_{v}} = f\left(\alpha_{ew} \times \mathbf{n}\right) \times \left(\#\alpha_{ew}^{3} + \mathcal{O}(\alpha_{ew}^{4})\right)$

"safe" to use perturbation theory

Soft-collinear effective field theory approach

$$\begin{bmatrix} \frac{\mathrm{d}(\tilde{\sigma v})^{S}}{\mathrm{d}E_{\gamma}} \end{bmatrix}_{IJ} = \frac{1}{(\sqrt{2})^{n_{id}}} \frac{1}{9} \frac{2}{\pi m_{V}} \sum_{\mathcal{F},\mathcal{F}=0,2} \sum_{i,j} \kappa_{ij}^{S}$$

Six Motokino-annihilation operators

$$\begin{split} \mathcal{O}_{\mathcal{J}}^{(0)} &= \tilde{\Upsilon}_{u\alpha}^{A} \eta_{u}^{\alpha\beta} \tilde{\Upsilon}_{u\beta}^{B} T_{\mathcal{J}}^{ABCD} \tilde{\mathcal{A}}_{\perp c,\mu}^{C}(sn_{+}) \eta_{\perp}^{\mu\nu} \tilde{\mathcal{A}}_{\perp \bar{c},\nu}^{D}(tn_{-}) , \\ \mathcal{O}_{\mathcal{J}}^{(2)_{1}} &= \tilde{\Upsilon}_{u\alpha}^{A} \tilde{\Upsilon}_{u\beta}^{B} T_{\mathcal{J}}^{ABCD} (\eta_{\perp}^{\alpha\mu} \eta_{\perp}^{\beta\nu} + \eta_{\perp}^{\alpha\nu} \eta_{\perp}^{\beta\mu}) \tilde{\mathcal{A}}_{\perp c,\mu}^{C}(sn_{+}) \tilde{\mathcal{A}}_{\perp \bar{c},\nu}^{D}(tn_{-}) \\ \mathcal{O}_{\mathcal{J}}^{(2)_{2}} &= \tilde{\Upsilon}_{u\alpha}^{A} (n_{+} - n_{-})^{\alpha} \tilde{\Upsilon}_{u\beta}^{B} (n_{+} - n_{-})^{\beta} T_{\mathcal{J}}^{ABCD} \tilde{\mathcal{A}}_{\perp c,\mu}^{C}(sn_{+}) \eta_{\perp}^{\mu\nu} \\ &+ \frac{4}{3} \mathcal{O}_{\mathcal{J}}^{(0)} ; \\ &+ \frac{3}{4} \mathbb{O}_{\mathcal{J}}^{(0)} ; \end{split}$$

 $H^{S;i,j}_{\mathcal{J},\mathcal{J}}Z^{33}_{\gamma} \times \left[d\omega J \left(4m_V(m_V - E - \omega/2) \right) W_{\mathcal{J},\mathcal{J};IJ}(\omega) \right]$

Endpoint $\rightarrow m_{\chi}^2 \ll 4m_{\gamma}^2$

Go to the blackboard II

Outline

Motivation

Indirect detection

Sommerfeld factor

Conclusions

Plots

Without further due...

 $E_{\gamma} \; [\text{GeV}]$

Meme legend

Lighter winos/higgsinos Kinematic $W^+W^-\gamma$ threshold "lifted" by the Sommerfeld effect

What's going on?

What's going on ? Charginos are electrically charged / Sommerfeld resonances

What's going on? Sommerfeld resonances

What's going on? Sommerfeld resonances

What's going on? Sommerfeld resonances

DMYSpec https://dmyspec.hepforge.org/

More results to brag about

More results to brag about

Outline

Motivation

Indirect detection

Sommerfeld factor

Conclusions

Conclusions

Conclusions

- TeV-scale WIMP Dark Matter is still "a thing" in 2024
- Cherenkov telescopes are excelent instruments to search for DM
- Beautiful and complex phenomenology for indirect detection •
 - Sommerfeld effect, internal bremsstrahlung, resonances, spectral lines, radiative electroweak effects, ...
- Armed with sophisticated EFT tools tackled these obstacles
 - ready for implementation in future observations
- Further explorations in the remaining 2020s crucial

HE DMLANDSCAPE

