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Inelastic DM Direct Detection
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Nonperturbative
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In EFT
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Two Critical Processes

Upscatter off nuclei and Xu decay

↑, q ↑,
2

> > T

3 z An
>

N
imme j

N

through the Same magnetic dipole transition interaction.
--



Monoenergetic Photon Signal

Cygnus Inelastic upscatter Desay in

: X, ↑
z Detector

* -3 7,* 3 Tz
T

*
* &, = - ↑F

S 3 z

&
g-mmmmmmmmmm



Step 1 :



Inelastic Upscotter through Magnetic Dipole Transition
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Nucleous Nucleus

Model dependence Nuclear responses

Jisotope - dependent)

Minimum DM speed necessary

to scatter with Er=
(no dependence on 2)

[Borello
, Chong , Newby



Nuclear Responses
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Which Elements Dominate Scattering ?

spin-weighted
number density number density

The answer depends on mony
critical details :

· Inelasticity : larger 5 requires larger A

· Spin dependence · isotopes with higher spin
haveOn contributions

· Scattering location abundances very within the Earth



Major Importance
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Step 2 :



Excited State Decay
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Upshot

Broad parameter space Ima
,
in
,

8) where

size of detector 1 &
x

& radius of Earth

GM
E Th gn

= /

Earth radius

detector

depth



Detection

Large volume (not mass) gaseous
detector is ideal :

-
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CTONUS proposal :

1000 u Musi
Threshold : few KeVee

E-resolution !

Backgrounds !

We utilize the volume
,

not the directionality !



Monoenergetic Photon Signal

Rate :

The key is finding the monrenergetic

photon signal above backgrounds.

1
We utilized the fact that our signal rate-

depends strongly on the amount of

rock overburden (allowing DM to upscotter)
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Directionality of (Inelostis) Dark Matter
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Northern Hemisphere * Southern Hemisphere *
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/DM wind !
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SUPL -A

DM can scatter in the crust DM can scatter in the entire Earth

(hygnns above horizon most of the doy) Kygurs below horizon most of the day

Signal rates larger for detector & SUPL



Sidered Daily Modulation
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Outstanding method to separate signol from backgrounds .
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Sidered Daily Modulation Rates
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Put all the
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Projected Sensitivity
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recoilLI nuclear Projected Sensitivity
bounds !

Lions daily modulation
3

sensitivity 1000 m
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Conclusions
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