Inflationary Schwinger Dark Matter Production

DMLAND Workshop, MITP Mainz Germany, September 4, 2024

In collaboration with Mar Bastero-Gil, Paulo Ferraz, Jose Santiago, Lorenzo Ubaldi, RVM (1810.07208, 2103.12145, 2311.09475, 2311.15137, + ongoing)

DM Parameter Space $(g_D E > H_{end}^2, m_{\chi} < H_{end})$

Mar Bastero-Gil, Paulo B. Ferraz, Lorenzo Ubaldi, RVM: 2312.15137

DM Parameter Space $(g_D E > H_{end}^2, m_{\chi} > H_{end})$

Mar Bastero-Gil, Paulo B. Ferraz, Lorenzo Ubaldi, RVM: 2311.09475

Can generate DM with mass $m_{\chi} \gg H_{end}$ which would be exponentially suppressed in purely gravitational production

Schwinger Current in de-Sitter

M. Bastero-Gil, P. B. Ferraz, A. Torres Manso, L. Ubaldi, RVM: PRELIMINARY

We find strictly positive conductivities and in the conformal limit and similar results for both fermions and scalars

Summary and Conclusions

- Have presented an inflationary Schwinger (non-thermal) dark matter production mechanism
- ► Can generate observed relic abundance for 'dark electron' masses in the range $0.1 \text{ eV} \lesssim m_\chi \lesssim 10^{15} \text{ GeV}$ (lower limit of 100 eV for fermions)
- Viable even in the conformal limit (massless) when purely gravitational production is absent
- ▶ Also viable in the $m_{\chi} > H_{end}$ regime where purely gravitational production is exponentially suppressed
- Examining current in de-Sitter space
- Examining backreaction and reheating effects

GRACIAS!

AND COME VISIT!

EXTRA SLIDES!

Constraints on Model Parameters

No-Thermalization within dark sector (or with SM)

$$g_D \lesssim 2 \left(rac{\overline{m}_\chi \epsilon_R^2}{(E/H_{
m end}^2)^3}
ight)^{1/7}$$

No Schwinger backreaction

 $\overline{\sigma} < 1$

No backreaction on inflaton dynamics

$$ho_E^{\mathrm{end}} <
ho_I^{\mathrm{end}} \Rrightarrow 1 < rac{E}{H_{\mathrm{end}}^2} < 10^9$$

Visible sector must have more energy density than dark sector at end of reheating (to ensure matter radiation equality)

$$\rho_{E}^{\text{end}} < \rho_{R} \Rrightarrow H_{\text{end}} < \frac{\sqrt{6} \epsilon_{R}^{2} M_{\text{Pl}}}{(E/H_{\text{end}}^{2})}$$

Producing a Dark Electric Field

To have a current need a (background) dark E-field In principle any inflationary VDM mechanisms can work Inspired by magnetogenesis in axion inflation models

$$\mathcal{L}_{\text{source}}(A_{\mu},\phi) = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + V(\phi) + \frac{lpha}{4f}\phi F_{\mu\nu}\tilde{F}^{\mu
u}$$

Can reproduce observed DM relic abundance for: $\mu eV \lesssim m_A \lesssim TeV$, 100 GeV $\lesssim H \lesssim 10^{14}$ GeV (Bastero-Gil, Santiago, Ubaldi, RVM; 1810.07208, 2103.12145)

Dark *E*-field polarized with peak in energy density spectrum Coherence length size of the horizon at end of inflation

Energy density spectrum at end of inflation (Mar Bastero-Gil, Jose Santiago, Lorenzo Ubaldi, RVM: 1810.07208, 2103.12145)

Power spectrum is peaked at very small scales ($\sim cm - km$) \Rightarrow power suppressed at CMB scales evading isocurvature limits

Inflationary dark vector production mechanisms

A. E. Nelson and J. Scholtz, Dark Light, Dark Matter and the Misalignment Mechanism,

Phys. Rev. D84 (2011) 103501, [arXiv:1105.2812].

P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, Wispy Cold Dark Matter, JCAP 1206 (2012) 013, [arXiv:1201.5902].

P. W. Graham, J. Mardon, and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D93 (2016), no. 10 103520, [arXiv:1504.02102].

M. Bastero-Gil, J. Santiago, L. Ubaldi, and R. Vega-Morales, Vector dark matter production at the end of inflation, JCAP 1904 (2019), no. 04 015, [arXiv:1810.07208].

Y. Ema, K. Nakayama, and Y. Tang, Production of Purely Gravitational Dark Matter: The Case of Fermion and Vector Boson, JHEP 07 (2019) 060, [arXiv:1903.10973].

K. Nakayama, Constraint on Vector Coherent Oscillation Dark Matter with Kinetic

Function, JCAP 08 (2020) 033, [arXiv:2004.10036].

Y. Nakai, R. Namba, and Z. Wang, Light Dark Photon Dark Matter from Inflation, JHEP 12 (2020) 170, [arXiv:2004.10743].

A. Ahmed, B. Grzadkowski, and A. Socha, Gravitational production of vector dark matter, JHEP 08 (2020) 059, [arXiv:2005.01766].

E. W. Kolb and A. J. Long, Completely Dark Photons from Gravitational Particle Production During Inflation, arXiv:2009.03828.

B. Salehian, M. A. Gorji, H. Firouzjahi, and S. Mukohyama, Vector dark matter production from inflation with symmetry breaking, arXiv:2010.04491.

H. Firouzjahi, M. A. Gorji, S. Mukohyama, and B. Salehian, Dark photon dark matter from charged inflaton, arXiv:2011.06324.