Dark matter self-interaction: the fate of the spike & annihilation-boosted dark matter in the Milky Way galaxy

Motoko Fujiwara (Technical University of Munich)

Collaboration w/

Alejandro Ibarra (TU Munich)

Seminar @MITP workshop, Mainz Sept. 3rd, 2024

Takashi Toma (Kanazawa U.)

[Work in progress]

Dark matter self-interaction

Question: What is the DM search strategy, including self-interaction?

DM self-interaction

@galactic center

DM-SM interaction

@earth detector

Answer: "Annihilation" Boosted DM scatt. w/ $n \rightarrow m$ kinematical feature

Particle Dark Matter

Idea: Dark Matter (DM) = elementary particle

Goal: Elucidate DM interaction theory

 \simeq Writing down SM + DM Lagrangian

{
$$m_{\chi}$$
, α_{SM} , α_{self} }
DM mass DM-SM int. DM self-int.

Particle Dark Matter

Idea: Dark Matter (DM) = elementary particle

Goal: Elucidate DM interaction theory

 \simeq Writing down SM + DM Lagrangian

Search strategy?

 $m_{\gamma},$ $\alpha_{\rm SM}, \alpha_{\rm self}$

DM-SM interaction

- As we have studied broadly so far!
- cf. Discussions last week [(Strongly interacting) DM at collider] [Sub-GeV DM]

DM mass [GeV]

cf. WIMP search strategy

1-2

Particle Dark Matter

Idea: Dark Matter (DM) = elementary particle

Goal: Elucidate DM interaction theory

 \simeq Writing down SM + DM Lagrangian

Search strategy?

 $\alpha_{\rm SM}, \alpha_{\rm self}$ $m_{\gamma},$

DM self-interaction

- (Could be) the most challenging part for experimental search

* conceptual figure

Question: What is the DM search strategy, including self-interaction?

• Key to determine DM density distribution around galactic center \rightarrow "DM circumstance" = Crucial input for astro. studies cf. Gonzalo's talk

1-3

Question: What is the key prediction of DM self-interaction to determine search strategy?

2-1

DM number changing process ($n \rightarrow m$ process)

DM number changing process ($n \rightarrow m$ process)

$$= 2 : \qquad \chi \chi \to \chi X$$

[F. D'Eramo, J. Thaler (2010)]

[F. D'Eramo, M. McCullough, J. Thaler (2012)]

e.g. [Y. Hochberg, et al. (2014)]

e.g. [J. Herms, et al. (2018)]

DM number changing process ($n \rightarrow m$ process)

Several functions

- Associated by DM self-interaction (cf. DM self-scattering) → Break correlation btw DM-SM interaction & self-interaction
- Affect DM density profile
- Accelerate DM particle by $n \rightarrow m$ kinematics

- \rightarrow The effect may be inherited in DM signature at local galaxy
- \rightarrow New functions in DM search?

$$= 3 : \qquad \chi \chi \chi \to \chi \chi$$

New approach to probe DM self-interaction

- Challenging to probe DM-only process?
- Absence of smoking gun signature?
- Suppressed rate by number density?

New approach to probe DM self-interaction

- Challenging to probe DM-only process? → Clear policy that we MUST combine w/ DM-SM interaction
- Absence of smoking gun signature?
- Suppressed rate by number density?

New approach to probe DM self-interaction

- Challenging to probe DM-only process? \rightarrow Clear policy that we MUST combine w/ DM-SM interaction
- Absence of smoking gun signature?
- Suppressed rate by number density?

→ Search for Boosted DM Signature ($E_{\gamma} \simeq O(m_{\gamma})$) cf. Shao-Feng's talk

New approach to probe DM self-interaction

- Challenging to probe DM-only process? → Clear policy that we MUST combine w/ DM-SM interaction
- Absence of smoking gun signature? \rightarrow Search for Boosted DM Signature ($E_{\chi} \simeq O(m_{\chi})$)
- Suppressed rate by number density? → DM dense circumstance may enhance boosted DM source

New approach to probe DM self-interaction

- Challenging to probe DM-only process? \rightarrow Clear policy that we MUST combine w/ DM-SM interaction
- → Search for Boosted DM Signature ($E_{\gamma} \simeq O(m_{\gamma})$) Absence of smoking gun signature?
- → DM dense circumstance may enhance boosted DM source Suppressed rate by number density?

See also [K. Agashe, et al. (2014)] [D. McKeen, N. Raj (2019)] [T. Toma (2022)] [M. Aoki, T. Toma (2023)]

Our question: What is the consequence of $n \rightarrow m$ processes?

How can we probe parameters of DM interaction theory?

Contents

• Setup

Results

- Boosted DM flux
- Constraints

Setup

Model-independent parametrization

Boosted DM flux from GC: $\Phi_{\text{BDM}} = \frac{1}{n!} \frac{r_{\odot}}{4\pi} \left(\frac{\rho_{\odot}}{m_{\chi}}\right)^n$

Cross section

$$\langle \sigma_{n \to m} v^{n-1} \rangle = \frac{\alpha_{\text{self}}^n}{m_{\chi}^{3n-4}}$$

$$\sigma_{2\to 2} = \frac{\alpha_{2\to 2}^2}{m_{\chi}^2} \equiv a^2 \frac{\alpha_{\text{self}}^2}{m_{\chi}^2}$$

$$\langle \sigma_{\rm ann} v \rangle = \frac{\alpha_{2 \to 0}^2}{m_{\chi}^2} \equiv b^2 \frac{\alpha_{\rm se}^2}{m_{\chi}^2}$$

$$\times \langle \sigma_{n \to m} v^{n-1} \rangle \times \left[2\pi \int d\theta \sin \theta \int_{1.0.5} \frac{ds}{r_{\odot}} \left(\frac{\rho_{\chi}(r(s,\theta))}{\rho_{\odot}} \right)^{n} \right]$$

Model-independent parametrization

Boosted DM flux from GC: $\Phi_{\text{BDM}} = \frac{1}{n!} \frac{r_{\odot}}{4\pi} \left(\frac{\rho_{\odot}}{m_{\chi}}\right)^{n}$

Cross section

$$\langle \sigma_{n \to m} v^{n-1} \rangle = \frac{\alpha_{\text{self}}^n}{m_{\chi}^{3n-4}}$$

$$\sigma_{2\to 2} = \frac{\alpha_{2\to 2}^2}{m_{\chi}^2} \equiv a^2 \frac{\alpha_{\text{self}}^2}{m_{\chi}^2}$$

$$\langle \sigma_{\rm ann} v \rangle = \frac{\alpha_{2 \to 0}^2}{m_{\chi}^2} \equiv b^2 \frac{\alpha_{\rm se}^2}{m_{\chi}^2}$$

$$\times \langle \sigma_{n \to m} v^{n-1} \rangle \times \left[2\pi \int d\theta \sin \theta \int_{1.0.5} \frac{ds}{r_{\odot}} \left(\frac{\rho_{\chi}(r(s,\theta))}{\rho_{\odot}} \right)^{n} \right]$$

[S. L. Shapiro, et al. (2014)] [S. L. Shapiro (2018)]

1. Spike from self-scattering core

5

(Annihilation) **2. Dissolution via # changing:** $2 \rightarrow 0 \& n \rightarrow m$

DM # evolution @fixed orbit $2 \rightarrow 0$ process

$$\dot{n}_{\chi}(r,t) = -\langle \sigma_{\mathrm{ann}} v \rangle \left(n_{\chi}(r,t) \right)$$

 $n \rightarrow m$ process

 $t))^{2} - \frac{n}{n!} \left\langle \sigma_{n \to m} v^{n-1} \right\rangle \left(n_{\chi}(r,t) \right)^{n}$

 $\overline{N-1}$

One process ($N \rightarrow M$) dominance \rightarrow analytical solution

$$\rho_{\chi}(r,t) = \frac{\rho_{\rm pl}^{N \to M} \rho_{\chi}(r,t_{\rm ini})}{\left[(\rho_{\rm pl}^{N \to M})^{N-1} + \rho_{\chi}(r,t_{\rm ini})^{N-1} \right]^{\frac{1}{N-1}}}$$

More than one process \rightarrow numerical solution

DM # changing processes

 \rightarrow plateau density around the central region

6

[X. Chu, C. Garcia-Cely (2018)] [A. Kamada, H. J. Kim (2020)]

3. Self-heating: $n \rightarrow m$

DM density profile ~fate of DM spike~

- $2 \rightarrow 1$
- DM-SM interaction & DM self-interaction are both in weak regime
- Core formation effect ($2 \rightarrow 2$) is irrelevant
- Dissolution effect (2 \rightarrow 1 & annihilation) crucially determine ρ_{γ}
 - → High-density region may survive & realize boosted DM flux

$3 \rightarrow 2$

- DM-SM interaction: weak & DM self-interaction: strong
- Core formation (2 \rightarrow 2) reduces high-density region [Y. Hochberg, et al. (2014)]
- Modified power law for spike from isothermal core [S. L. Shapiro, et al. (2014)]

→ Boosted DM flux is totally irrelevant

• Same conclusion for $n \to m$ $(n \ge 3)$

Annihilation Boosted DM via $2 \rightarrow 1$ (= semi-annihilation)

@galactic center

@earth detector

9

Results

$$\Phi_{\rm BDM}^{3\to 2} \lesssim 10^{-32} \ {\rm cm}^{-2} {\rm s}^{-1}$$

for $n \ge 3$...

Constraint: σ_p **vs.** m_{χ}

Sensitivity @direct detection

Projected sensitivity of ordinary DM-proton scattering

- power suppression & acoustic peak shift [W. L. Xu, et al. (2018)]

- [T. Bringmann, M. Pospelov (2018)]

Constraint: σ_p **vs.** m_{χ}

Sensitivity @direct detection

- Projected sensitivity of ordinary DM-proton scattering
- High initial $E_{\gamma} \rightarrow$ Better sensitivity for low DM mass

Constraint: σ_p **vs.** m_{χ}

Sensitivity @direct detection

- Projected sensitivity of ordinary DM-proton scattering
- High initial $E_{\chi} \rightarrow$ Better sensitivity for low DM mass
- Recoil energy has a sharp cutoff (@ $E_{\chi} = m_{\chi}/4$)

$$\Phi_{\rm BDM} = \frac{1}{2!} \frac{r_{\odot}}{4\pi} \left(\frac{\rho_{\odot}}{m_{\chi}}\right)^2 \langle \sigma_{2\to 1} v \rangle \left[2\pi \int d\theta \sin\theta \int_{1.0.5} \frac{ds}{r_{\odot}} \left(\frac{\rho_{\chi}(r(s,\theta))}{\rho_{\odot}}\right)^2 \right]$$

Constraint: $\langle \sigma_{2 \to 1} v \rangle$ vs. m_{χ}

Cross section dependence

- Sensitivity of σ_p is parametrized by $\langle \sigma_{2 \rightarrow 1} v \rangle$ via Φ_{BDM}
- Larger $\langle \sigma_{2 \to 1} v \rangle$: Sensitive for smaller σ_p
- Smaller $\langle \sigma_{2 \rightarrow 1} v \rangle$: Attenuation reduces DM energy (blind spot)

+ DM self-interaction ...?

Cross section dependence

- Sensitivity of σ_p is parametrized by $\langle \sigma_{2 \rightarrow 1} v \rangle$ via Φ_{BDM}
- Larger $\langle \sigma_{2 \to 1} v \rangle$: Sensitive for smaller σ_p

We systematically studied the conscience of $n \rightarrow m$ process at local galaxy

- Key functions of $n \rightarrow m$ process:
 - Modifying DM density at the central region
 - \rightarrow Deplete DM high-density region for $n \geq 3$
 - Accelerate DM for n > m
 - \rightarrow Realize sizable boosted DM flux for $2 \rightarrow 1$
- (Boosted DM flux) \times (DM-proton scattering) = (**Boosted DM signature**)
- Energy threshold is determined by $n \rightarrow m$ kinematics
 - \rightarrow DM mass reconstruction could be possible for $2 \rightarrow 1$ scenario
- Experimental sensitivities:
 - current bound : CRESST, XENON, MiniBooNE
 - : DARWIN, DUNE (up to 10^{-40} cm² for $m_{\gamma} \sim 0.1 1$ GeV) prospect

Concrete model: semi-annihilation (1/2)

Tree-level scenario w/ Z_3 symmetry

Table 2: Field content and symmetries of the model with a Z_3 symmetry.

Annihilation

spin	Z_3
plex scalar	$(-1)^{1/3}$
al scalar	0

Semi-annihilation

Concrete model: semi-annihilation (2/2)

Loop-induced scenario

Semi-annihilation

